AAS su sintetizirani 1930-ih, a danas se terapeutski koriste u medicini za podsticanje rasta mišića i apetita, induciranje muškog puberteta i liječenje hroničnih gubljenja stanja, kao što je rak i sindrom stečene imunodeficijencije. Američki koledž za sportsku medicinu priznaje da AAS, u prisustvu odgovarajuće prehrane, može doprinijeti povećanju tjelesne težine, često da se povećava nemasna masa i postiže dobitak u mišićnoj snazi vježbanjem visokog intenziteta i pravilnom prehranom mogu se dodatno povećati upotrebom AAS kod nekih osoba.[2]
Ergogena upotreba za AAS u sportu, za trke i bodibilding kao lijekovi za poboljšanje performansi su kontroverzni zbog štetnih efekata i potencijala da steknu nepravednu prednost u fizičkim takmičenjima. Njihova upotreba naziva se doping i zabranjena je od strane većine glavnih sportskih tijela. Sportisti traže droge kako bi poboljšali svoje sportske sposobnosti od početka Olimpijskih igara u Drevnoj Grčkoj. Dugo godina su AAS daleko najviše otkrivene doping supstance u IOC-akreditiranim laboratorijama.[7] U zemljama u kojima su AAS kontrolirane supstance, često postoji crno tržište u kojem ih korisnici krijumčare, krišom proizvode ili čak prodaju krivotvorene droge.
Farmakodinamika AAS je različita od one kod peptidnihhormona. Vodotopivi peptidni hormoni ne mogu prodrijeti u masnu ćelijsku membranu i samo indirektno utiču na jedro ciljane ćelije putem njihove interakcije s površinom ćelijskih receptora. Međutim, kao hormoni topivi u mastima, AAS su membranski propusni i izravnim djelovanjem utiču na jedro ćelija. Farmakodinamičko djelovanje AAS započinje kada egzogeni hormon prodre kroz membranu ciljne ćelije i veže se za androgeni receptor (AR) koji se nalazi u citoplazmi te ćelije. Odatle, složeni receptor hormona difundira u jezdro, gdje ili mijenja ekspresijugena[18] ili aktivira procese koji šalju signale u druge dijelove ćelije.[19] Različiti tipovi AAS vežu se za AAR s različitim afinitetima, ovisno o njihovoj hemijskoj strukturi.[7]
Učinak AAS na mišićnu masu uzrokuje se na najmanje dva načina:[20] prvo, povećavaju proizvodnja proteina; drugo, smanjuju vrijeme oporavka blokirajući efekte hormona stresa kortizola na mišićno tkivo, tako da se katabolizam mišića znatno smanjuje. Pretpostavljeno je da se ovo smanjenje razgradnje mišića može dogoditi AAS-om koji inhibira djelovanje drugih steroidnih hormona, zvanih glukokortikoidi koji pospješuju razgradnju mišića.[21] AAS također utiču na broj ćelija koje se razvijaju u one za skladištenje masti, favorizirajući diferencijaciju u mišićne ćelije.[22]
Anabolički i androgeni efekti
Androgena vs. anaboliička aktivnost androgen/anabolicičkih steroida
Kao što im samo ime govori, AAS imaju dvije različite, ali preklapajuće se vrste efekata: anabolički , što znači da promoviraju anabolizam (rast ćelija) i androgeni (ili virilizirajući), što znači da utiču na razvoj i održavanje muških svojstava.
Neki primjeri anaboličkih efekata ovih hormona su povećana biosinteza proteina iz aminokiselina, povećani apetit, povećano preuređivanje i rast kostiju i stimulacija kostne srži, koja povećava proizvodnja crvenih krvnih zrnaca. Putem niza mehanizama, AAS stimuliraju stvaranje mišićnih ćelija i time uzrokuju povećanje veličine skeletnih mišića, što dovodi do povećane snage.[23][24][25]
Androgeni efekti AAS su brojni. Ovisno o dužini upotrebe, nuspojave steroida mogu biti nepovratne. Pogođeni procesi uključuju pubertetski rast, lojne žlijezde za proizvodnju ulja i seksualnost (posebno u razvoju fetusa). Neki primjeri efekata virilizacije su rast klitorisa kod žena i penisa kod muške djece (veličina odraslog penisa se ne mijenja zbog steroida, povećanje glasnih žica, povećani libido, suzbijanje prirodnih spolnih hormona i oštećenje proizvodnje sperme..[26] Učinci na žene uključuju produbljivanje glasa, rast dlaka na licu i moguće smanjenje veličine dojki. Muškarci mogu razviti povećanje tkiva dojke, poznato kao ginekomastija, atrofiju testisa i smanjeni broj sperme.
Odnos androgen: anabolički AAS važan je faktor pri određivanju kliničke primjene ovih spojeva. Spojevi sa visokim omjerom androgenih i anaboličkih efekata lijek su izbora u terapiji zamjene androgena (npr. liječenje hipogonadizma kod muškaraca), dok su spojevi sa smanjenim omjerom androgeni: anabolici poželjni za anemiju i osteoporozu, da poništi gubitak proteina nakon traume, operacije ili produžene imobilizacije. Određivanje odnosa androgeni: anabolici obično se izvodi u ispitivanjima na životinjama, što je dovelo do stavljanja na tržište nekih spojeva za koje se tvrdi da imaju anaboličku aktivnost sa slabim androgenim efektima. Ovo razdvajanje je manje izraženo kod ljudi, gdje svi AAS imaju značajne androgene učinke.[27]
Često korišteni protokol za određivanje omjera androgeni: anabolici, koji datira iz 1950-ih, koristi relativne težine trbušnog mišića prostate (VP) i levator ani (LA) mužjaka pacova . Težina VP je pokazatelj androgenih efekata, dok je LA težina pokazatelj anaboličkog efekta. Dvije ili više serija pacova su kastrirane i nisu podvrgnute nikakvom tretmanu, odnosno nekim AAS od interesa. Omjer LA / VP za AAS izračunava se kao omjer porasta tjelesne težine LA/VP koji nastaje tretiranjem tim spojem koristeći kastrirane, ali neobrađene pacove kao početnu liniju: (LAc, t–LAc)/(VPc, t–VPc). Omjer prirasta tjelesne mase LA/VP iz pokusa na pacovima nije jedinstven za testosteron (obično 0,3–0,4), ali je normaliziran u svrhu prezentacije i koristi se kao osnova za usporedbu za druge AAS, čiji se omjeri androgeni: anabolici odgovarajuće skaliraju (kao što je prikazano u gornjoj tabeli).[28][29] Ranih 2000-ih, ovaj postupak je standardiziran i generaliziran kroz OECD u onome što je danas poznato kao Hershbergerov test.
Disocijacija efekata
Endogeni / prirodni AAS poput testosterona i DHT i sintetički AAS posreduju u njihovim efektima vezanjem i aktiviranjem AR. Na osnovu životinjskih biotestova, učinci ovih sredstava su podijeljeno u dva djelomično nepodijeljiva tipa: anabolički (miotrofni) i androgeni. Disocijacija između odnosa ova dva tipa efekata u odnosu na onajk primijećen sa testosteronom uočena je u biološkim testovima na pacovima s različitim AAS. Teorije disocijacije uključuju razlike između AAS u pogledu njihovog unutarćelijskog metabolizma, funkcionalne selektivnosti (diferencijalno regrutovanje koaktivatora) i negenomskih mehanizama (tj. signaliziranje putem ne-AR membranskih androgenih receptora ili mAR-a
Mjerenje disocijacije između anaboličkih i androgenih efekata među AAS zasniva se uglavnom na jednostavnom, ali zastarjelom i nesofisticiranom modelu, koji koristi biotestove tkiva pacova. To se naziva "miotrofno-androgeni indeks".[1] U ovom se modelu miotrofna ili anabolička aktivnost mjeri promjenom težine pacovskog bulbokavernoznog / levator ani mišića, a androgena aktivnost mjeri se promjenom težine pacovskog ventralnog dijela prostate (ili, pak, pacovskih sjemenskih vezikula), kao odgovor na izloženost AAS. Mjerenja se zatim uspoređuju kako bi stvorila omjer.
Unutarćelijski metabolizam
Testosteron se metabolizira u različitim tkivima pomoću 5α-reduktaza u DHT, koji je 3- do 10 puta snažniji kao AR agonista, i aromatazom u estradiol, koji je estrogen i nema značajan AR afinitet. Pored toga, DHT metabolizira I 3α-hidroksisteroidna dehidrogenaza (3α-HSD) i 3β- hidroksisteroidna dehidrogenaza (3β-HSD) u 3α-androstandiol i 3β-androstanediol, što je metabolit s malim ili nikakvim afinitetom za AR. 5α-reduktaza je široko rasprostranjena po tijelu i koncentrirana je u različitim mjerama u koži (posebno vlasištu, licu i genitalnim područjima), prostati, sjemenim mjehurićima, jetri i mozgu. Nasuprot tome, ekspresija 5α-reduktaze u skeletnom mišiću nije detektibilna. Aromataza je visoko izražena u masnom tkivu i mozgu, a također je značajno izražena u skeletnim mišićima.[13]
Prirodni AAS poput testosterona i DHT te sintetski AAS su analozi i strukturno su vrlo slični. Zato oni imaju sposobnost vezanja i metabolizma istim steroid- metabolizirajućimenzimima. Prema objašnjenju unutarćelijskog metabolizma, odnos androgena i anaboličkika datog AR agonista povezan je s njegovom sposobnošću da se transformišu gore spomenutim enzimima u vezi s AR aktivnošću bilo kojih rezultirajućih proizvoda. Naprimjer, dok je AR aktivnost testosterona u velikoj mjeri pojačana lokalnom konverzijom putem 5α-reduktaze u DHT u tkivima u kojima je izražena 5α-reduktaza, AAS koji se ne metabolizira 5α-reduktazom ili je već 5α-reduciran, kao što je sam DHT ili njegov derivat (poput mesterolona ili drostanolona, ne bi se podvrgnuo takvom pojačavanju u navedenim tkivima. Štaviše, nandrolon se metabolizira pomoću 5α-reduktaze, ali za razliku od testosterona i DHT, 5α-reducirani metabolit nandrolona ima mnogo niži afinitet za AR od samog nandrolona, što rezultira smanjenom aktivacijom AR u tkivima koja izražavaju 5α-reduktazu. Kako su takozvana "androgena" tkiva poput folikula kože/dlake i muških reproduktivnih tkiva vrlo visoka u ekspresiji 5α-reduktaze, dok su skeletni mišići praktički lišeni 5α-reduktaze, to prije svega može objasniti visok miotrofno-androgeni omjer i disocijacije kod nandrolona, kao i kod raznih drugih AAS.[1]
Osim 5α-reduktaze, aromataza može inaktivirati testosteronsku signalizaciju u skeletnim mišićima i masnom tkivu, pa se može očekivati da AAS kod kojih nedostaje afiniteta za aromatazu, osim što nema potencijalne nuspojave ginekomastija, ima i komparativno veći miotrofno – androgeni omjer. DHT je inaktiviran velikom aktivnošću 3α-HSD u skeletnim mišićima (i srčanom tkivu), a slično se može očekivati i od AAS koji nemaju afinitet za 3α-HSD da imaju veći miotrofno-androgeni omjer (mada možda i povećani dugoročni kardiovaskularni rizici). U skladu s DHT, mestanolon (17α-metil-DHT) i mesterolon (1α-metil-DHT) opisani su kao vrlo slabi anabolici zbog inaktivacije 3α-HSD u skeletnim mišićima, dok su drugi derivati DHT-a sa drugim strukturnim karakteristikama poput metenolona, oksandrolona, oksimetolona, drostanolona i stanozolola svi loša podloga za 3α-HSD i opisani su kao moćni anabolik.[13]
Teorija unutarćelijskog metabolizma objašnjava kako i zašto bi moglo doći do izuzetne disocijacije između anaboličkih i androgenih efekata uprkos činjenici da se ti efekti posreduju kroz isti signalni receptor i zašto je ta disocijacija uvek nepotpuna. U prilog modela je rijetko stanje urođenog nedostatka 5α-reduktaze tipa 2, u kojem je enzim 5α-reduktaza tip 2 neispravan, proizvodnja DHT je poremećena, a razine DHT su niska, dok je nivo testosterona normalan.[30][31] Mužjaci s ovim stanjem rađaju se s dvosmislenim genitalijama i teško nerazvijenom ili čak odsutnom prostatom. Pored toga, u vrijeme puberteta, takvi muškarci razvijaju normalnu muskulaturu, produbljivanje glasa i libido, ali imaju smanjenu dlaku na licu, ženski obrazac dlake na tijelu (tj. uglavnom ograničen na stidni trokut i ispod pazuha), bez incidencije muškog obrasca gubitka kose, a nema povećanja prostate ili učestalosti karcinoma prostate.[31][32][33][34][35] Oni također ne razvijaju ginekomastiju kao posljedicu svog stanja.[33]
Studija na životinjama otkrila je da dva različita tipa elementa odgovora androgena mogu različito reagirati na testosteron i DHT nakon aktivacije AR.[37][38]
Pomoću aromataze prelaze u estradiol, a mnogi drugi AAS mogu se metabolizirati u njihove odgovarajuće estrogene metabolite. Kao primjer , 17α-alkilirani AAS metiltestosteron i metandienon pretvaraju se aromatazom u metilestradiol.[39] 4,5α- Dihidrogenirani derivati testosterona poput DHT ne mogu se aromatizirati, dok derivati 19-nortestosterona poput nandrolona mogu biti, ali u velikoj mjeri reducirani.[1][40] Neki derivati 19-nortestosterona, poput dimetandrolona i 11β-MNT, ne mogu se aromatizirati zbog sterne zapreke koju pruža njihova 11β-metilna grupa, dok usko srodni AAS trestolon (7α-metil-19-nortestosteron), u odnosu na nedostatak 11β-metilne grupe, može se aromatizirati.[41] Međutim, primjetno je da su estrogeni koji su 17α supstituisani (npr. etinilestradiol i metilestradiol) izrazito povećane estrogene snage, zbog poboljšane metaboličke stabilnosti, zbog čega , 17α-alkilirani AAS može zapravo imati visoku estrogenost i srazmjerno veće estrogene efekte od testosterona.
Glavni učinak estrogenosti je ginekomastija (dojke slične ženskim). AAS koji imaju visoki potencijal za aromatizaciju poput testosterona i posebno metiltestosterona pokazuju visok rizik od ginekomastije u dovoljno visokim dozama , dok AAS koji imaju smanjeni potencijal za aromatizaciju poput nandrolona pokazuju mnogo niži rizik (iako je i dalje potencijalno značajan pri velikim dozama). Suprotno tome, AAS koji su 4,5α reducirani, a neki drugi AAS (npr. derivati 11β-metiliranog 19-nortestosterona) nemaju rizik od ginekomastije. Uz ginekomastiju, AAS s visokom estrogenošću povećali su antigonadotropnu aktivnost, što rezultira povećanom potencijom u supresiji proizvodnje hipotalamusno-hipofizno-gonadne osovine i gonadnog testosterona.[42]
Progestogena aktivnost
Mnogi derivati 19-nortestosterona, uključujući nandrolon, trenbolon, etilestrenol (etilnandrol), metribolon (R-1881), trestolon, 11β-MNT, dimetandrolon i drugi, snažni su agonisti progesteronskog receptora (AR) i, prema tome, su progestogeni za AAS[43] Slično kao u slučaju estrogene aktivnosti, i progestogena aktivnost ovih lijekova povećava njihovu antigonadotropnu aktivnost. To rezultira povećanom snagom i efikasnošću ovih AAS kao antispermatogeniih agenasa i muške kontracepcije (ili, na drugi način, povećana snaga i efikasnost u izazivanju azoospermije i reverzibilne muške neplodnosti.
^Powers, Michael (2011). Houglum, Joel; Harrelson, Gary L. (ured.). Performance-Enhancing Drugs. Principles of Pharmacology for Athletic Trainers (2nd izd.). SLACK Incorporated. str. 345. ISBN978-1-55642-901-9.
^Barrett-Connor EL (1995). "Testosterone and risk factors for cardiovascular disease in men". Diabete Metab. 21 (3): 156–61. PMID7556805.
^De Piccoli B, Giada F, Benettin A, Sartori F, Piccolo E (1991). "Anabolic steroid use in body builders: an echocardiographic study of left ventricle morphology and function". Int J Sports Med. 12 (4): 408–12. doi:10.1055/s-2007-1024703. PMID1917226.
^Cheskis BJ (2004). "Regulation of cell signalling cascades by steroid hormones". J. Cell. Biochem. 93 (1): 20–7. doi:10.1002/jcb.20180. PMID15352158.
^Brodsky IG, Balagopal P, Nair KS (1996). "Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men—a clinical research center study". J. Clin. Endocrinol. Metab. 81 (10): 3469–75. doi:10.1210/jc.81.10.3469. PMID8855787.
^Giorgi A, Weatherby RP, Murphy PW (1999). "Muscular strength, body composition and health responses to the use of testosterone enanthate: a double blind study". Journal of Science and Medicine in Sport / Sports Medicine Australia. 2 (4): 341–55. doi:10.1016/S1440-2440(99)80007-3. PMID10710012.
^Chrousos, George P. (2012). "The Gonadal Hormones & Inhibitors". u Katzung, Bertram G. (ured.). Basic & Clinical Pharmacology. New York London: McGraw-Hill Medical McGraw-Hill distributor. ISBN978-0071764018.
^Roselli CE (1998). "The effect of anabolic-androgenic steroids on aromatase activity and androgen receptor binding in the rat preoptic area". Brain Res. 792 (2): 271–6. doi:10.1016/S0006-8993(98)00148-6. PMID9593936.
^Hershberger LG, Shipley EG, Meyer RK (1953). "Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method". Proceedings of the Society for Experimental Biology and Medicine (New York, N.Y.). 83 (1): 175–80. doi:10.3181/00379727-83-20301. PMID13064212.
^Imperato-McGinley J, Peterson RE, Gautier T, Sturla E (maj 1979). "Androgens and the evolution of male-gender identity among male pseudohermaphrodites with 5alpha-reductase deficiency". The New England Journal of Medicine. 300 (22): 1233–7. doi:10.1056/NEJM197905313002201. PMID431680.
Daniels RC (1. 2. 2003). The Anabolic Steroid Handbook. RCD Books. str. 80. ISBN0-9548227-0-6.
Gallaway S (15. 1. 1997). The Steroid Bible (3rd Sprl izd.). Belle Intl. str. 125. ISBN1-890342-00-9.
Llewellyn W (28. 1. 2007). Anabolics 2007 : Anabolic Steroid Reference Manual (6th izd.). Body of Science. str. 988. ISBN978-0-9679304-6-6.
Roberts A, Clapp B (januar 2006). Anabolic Steroids: Ultimate Research Guide. Anabolic Books, LLC. str. 394. ISBN1-59975-100-3.
Tygart TT (decembar 2009). "Steroids, the Media, and Youth". Prevention Researcher Integrated Research Services, Inc. SIRS Researcher. 16 (7–9). Arhivirano s originala, 29. 11. 2014. Pristupljeno 24. 11. 2013.
Eisenhauer L (Nov 7, 2005). "Do I Look OK?". St. Louis Post-Dispatch (St. Louis, MO). Arhivirano s originala, 2. 12. 2013. Pristupljeno 25 Oct 2010.
Fragkaki AG, Angelis YS, Koupparis M, Tsantili-Kakoulidou A, Kokotos G, Georgakopoulos C (2009). "Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure". Steroids. 74 (2): 172–97. doi:10.1016/j.steroids.2008.10.016. PMID19028512.
McRobb L, Handelsman DJ, Kazlauskas R, Wilkinson S, McLeod MD, Heather AK (2008). "Structure-activity relationships of synthetic progestins in a yeast-based in vitro androgen bioassay". J. Steroid Biochem. Mol. Biol. 110 (1–2): 39–47. doi:10.1016/j.jsbmb.2007.10.008. PMID18395441.