Kaniadakis distribution
Not to be confused with the
K-distribution of probability distributions.
In statistics , a Kaniadakis distribution (also known as κ-distribution ) is a statistical distribution that emerges from the Kaniadakis statistics .[ 1] There are several families of Kaniadakis distributions related to different constraints used in the maximization of the Kaniadakis entropy, such as the κ-Exponential distribution , κ-Gaussian distribution , Kaniadakis κ-Gamma distribution and κ-Weibull distribution . The κ-distributions have been applied for modeling a vast phenomenology of experimental statistical distributions in natural or artificial complex systems , such as, in epidemiology ,[ 2] quantum statistics ,[ 3] [ 4] [ 5] in astrophysics and cosmology ,[ 6] [ 7] [ 8] in geophysics ,[ 9] [ 10] [ 11] in economy ,[ 12] [ 13] [ 14] in machine learning .[ 15]
The κ-distributions are written as function of the κ-deformed exponential, taking the form
f
i
=
exp
κ κ -->
-->
(
− − -->
β β -->
E
i
+
β β -->
μ μ -->
)
{\displaystyle f_{i}=\exp _{\kappa }(-\beta E_{i}+\beta \mu )}
enables the power-law description of complex systems following the consistent κ-generalized statistical theory .,[ 16] [ 17] where
exp
κ κ -->
-->
(
x
)
=
(
1
+
κ κ -->
2
x
2
+
κ κ -->
x
)
1
/
κ κ -->
{\displaystyle \exp _{\kappa }(x)=({\sqrt {1+\kappa ^{2}x^{2}}}+\kappa x)^{1/\kappa }}
is the Kaniadakis κ-exponential function.
The κ-distribution becomes the common Boltzmann distribution at low energies, while it has a power-law tail at high energies, the feature of high interest of many researchers.
List of κ-statistical distributions
Supported on the whole real line
Plot of the κ-Gaussian distribution for typical κ-values. The case κ=0 corresponds to the normal distribution.
The Kaniadakis Gaussian distribution , also called the κ-Gaussian distribution. The normal distribution is a particular case when
κ κ -->
→ → -->
0.
{\displaystyle \kappa \rightarrow 0.}
The Kaniadakis double exponential distribution, as known as Kaniadakis κ-double exponential distribution or κ-Laplace distribution. The Laplace distribution is a particular case when
κ κ -->
→ → -->
0.
{\displaystyle \kappa \rightarrow 0.}
[ 18]
Supported on semi-infinite intervals, usually [0,∞)
Plot of the κ-Gamma distribution for typical κ-values.
The Kaniadakis Exponential distribution , also called the κ-Exponential distribution. The exponential distribution is a particular case when
κ κ -->
→ → -->
0.
{\displaystyle \kappa \rightarrow 0.}
The Kaniadakis Gamma distribution , also called the κ-Gamma distribution, which is a four-parameter (
κ κ -->
,
α α -->
,
β β -->
,
ν ν -->
{\displaystyle \kappa ,\alpha ,\beta ,\nu }
) deformation of the generalized Gamma distribution .
The κ-Gamma distribution becomes a ...
κ-Exponential distribution of Type I when
α α -->
=
ν ν -->
=
1
{\displaystyle \alpha =\nu =1}
.
κ-Erlang distribution when
α α -->
=
1
{\displaystyle \alpha =1}
and
ν ν -->
=
n
=
{\displaystyle \nu =n=}
positive integer.
κ -Half-Normal distribution , when
α α -->
=
2
{\displaystyle \alpha =2}
and
ν ν -->
=
1
/
2
{\displaystyle \nu =1/2}
.
Generalized Gamma distribution , when
α α -->
=
1
{\displaystyle \alpha =1}
;
In the limit
κ κ -->
→ → -->
0
{\displaystyle \kappa \rightarrow 0}
, the κ-Gamma distribution becomes a ...
Erlang distribution , when
α α -->
=
1
{\displaystyle \alpha =1}
and
ν ν -->
=
n
=
{\displaystyle \nu =n=}
positive integer;
Chi-Squared distribution , when
α α -->
=
1
{\displaystyle \alpha =1}
and
ν ν -->
=
{\displaystyle \nu =}
half integer;
Nakagami distribution , when
α α -->
=
2
{\displaystyle \alpha =2}
and
ν ν -->
>
0
{\displaystyle \nu >0}
;
Rayleigh distribution , when
α α -->
=
2
{\displaystyle \alpha =2}
and
ν ν -->
=
1
{\displaystyle \nu =1}
;
Chi distribution , when
α α -->
=
2
{\displaystyle \alpha =2}
and
ν ν -->
=
{\displaystyle \nu =}
half integer;
Maxwell distribution, when
α α -->
=
2
{\displaystyle \alpha =2}
and
ν ν -->
=
3
/
2
{\displaystyle \nu =3/2}
;
Half-Normal distribution , when
α α -->
=
2
{\displaystyle \alpha =2}
and
ν ν -->
=
1
/
2
{\displaystyle \nu =1/2}
;
Weibull distribution , when
α α -->
>
0
{\displaystyle \alpha >0}
and
ν ν -->
=
1
{\displaystyle \nu =1}
;
Stretched Exponential distribution , when
α α -->
>
0
{\displaystyle \alpha >0}
and
ν ν -->
=
1
/
α α -->
{\displaystyle \nu =1/\alpha }
;
Common Kaniadakis distributions
κ-Exponential distribution
κ-Gaussian distribution
κ-Gamma distribution
κ-Weibull distribution
κ-Logistic distribution
κ-Erlang distribution
κ-Distribution Type IV
Continuous probability distribution
The Kaniadakis distribution of Type IV (or κ-Distribution Type IV ) is a three-parameter family of continuous statistical distributions .[ 1]
The κ-Distribution Type IV distribution has the following probability density function :
f
κ κ -->
(
x
)
=
α α -->
κ κ -->
(
2
κ κ -->
β β -->
)
1
/
κ κ -->
(
1
− − -->
κ κ -->
β β -->
x
α α -->
1
+
κ κ -->
2
β β -->
2
x
2
α α -->
)
x
− − -->
1
+
α α -->
/
κ κ -->
exp
κ κ -->
-->
(
− − -->
β β -->
x
α α -->
)
{\displaystyle f_{_{\kappa }}(x)={\frac {\alpha }{\kappa }}(2\kappa \beta )^{1/\kappa }\left(1-{\frac {\kappa \beta x^{\alpha }}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\right)x^{-1+\alpha /\kappa }\exp _{\kappa }(-\beta x^{\alpha })}
valid for
x
≥ ≥ -->
0
{\displaystyle x\geq 0}
, where
0
≤ ≤ -->
|
κ κ -->
|
<
1
{\displaystyle 0\leq |\kappa |<1}
is the entropic index associated with the Kaniadakis entropy ,
β β -->
>
0
{\displaystyle \beta >0}
is the scale parameter, and
α α -->
>
0
{\displaystyle \alpha >0}
is the shape parameter.
The cumulative distribution function of κ-Distribution Type IV assumes the form:
F
κ κ -->
(
x
)
=
(
2
κ κ -->
β β -->
)
1
/
κ κ -->
x
α α -->
/
κ κ -->
exp
κ κ -->
-->
(
− − -->
β β -->
x
α α -->
)
{\displaystyle F_{\kappa }(x)=(2\kappa \beta )^{1/\kappa }x^{\alpha /\kappa }\exp _{\kappa }(-\beta x^{\alpha })}
The κ-Distribution Type IV does not admit a classical version, since the probability function and its cumulative reduces to zero in the classical limit
κ κ -->
→ → -->
0
{\displaystyle \kappa \rightarrow 0}
.
Its moment of order
m
{\displaystyle m}
given by
E
-->
[
X
m
]
=
(
2
κ κ -->
β β -->
)
− − -->
m
/
α α -->
1
+
κ κ -->
m
2
α α -->
Γ Γ -->
(
1
κ κ -->
+
m
α α -->
)
Γ Γ -->
(
1
− − -->
m
2
α α -->
)
Γ Γ -->
(
1
κ κ -->
+
m
2
α α -->
)
{\displaystyle \operatorname {E} [X^{m}]={\frac {(2\kappa \beta )^{-m/\alpha }}{1+\kappa {\frac {m}{2\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {m}{\alpha }}{\Big )}\Gamma {\Big (}1-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}}
The moment of order
m
{\displaystyle m}
of the κ-Distribution Type IV is finite for
m
<
2
α α -->
{\displaystyle m<2\alpha }
.
See also
References
^ a b Kaniadakis, G. (2021-01-01). "New power-law tailed distributions emerging in κ-statistics (a)" . Europhysics Letters . 133 (1): 10002. arXiv :2203.01743 . Bibcode :2021EL....13310002K . doi :10.1209/0295-5075/133/10002 . ISSN 0295-5075 . S2CID 234144356 .
^ Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020). "The κ-statistics approach to epidemiology" . Scientific Reports . 10 (1): 19949. arXiv :2012.00629 . Bibcode :2020NatSR..1019949K . doi :10.1038/s41598-020-76673-3 . ISSN 2045-2322 . PMC 7673996 . PMID 33203913 .
^ Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. (2011). "Generalized quantum entropies" . Physics Letters A . 375 (35): 3119– 3123. Bibcode :2011PhLA..375.3119S . doi :10.1016/j.physleta.2011.07.001 .
^ Ourabah, Kamel; Tribeche, Mouloud (2014-06-24). "Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics" . Physical Review E . 89 (6): 062130. Bibcode :2014PhRvE..89f2130O . doi :10.1103/PhysRevE.89.062130 . ISSN 1539-3755 . PMID 25019747 .
^ Lourek, Imene; Tribeche, Mouloud (2017). "Thermodynamic properties of the blackbody radiation: A Kaniadakis approach". Physics Letters A . 381 (5): 452– 456. Bibcode :2017PhLA..381..452L . doi :10.1016/j.physleta.2016.12.019 .
^ Carvalho, J. C.; do Nascimento, J. D.; Silva, R.; De Medeiros, J. R. (2009-05-01). "Non-Gaussian Statistics and Stellar Rotational Velocities of Main-Sequence Field Stars" . The Astrophysical Journal . 696 (1): L48 – L51 . arXiv :0903.0868 . Bibcode :2009ApJ...696L..48C . doi :10.1088/0004-637X/696/1/L48 . ISSN 0004-637X . S2CID 17161421 .
^ Abreu, Everton M.C.; Ananias Neto, Jorge; Mendes, Albert C.R.; de Paula, Rodrigo M. (2019). "Loop quantum gravity Immirzi parameter and the Kaniadakis statistics". Chaos, Solitons & Fractals . 118 : 307– 310. arXiv :1808.01891 . Bibcode :2019CSF...118..307A . doi :10.1016/j.chaos.2018.11.033 . S2CID 119207713 .
^ Soares, Bráulio B.; Barboza, Edésio M.; Abreu, Everton M.C.; Neto, Jorge Ananias (2019). "Non-Gaussian thermostatistical considerations upon the Saha equation". Physica A: Statistical Mechanics and Its Applications . 532 : 121590. arXiv :1901.01839 . Bibcode :2019PhyA..53221590S . doi :10.1016/j.physa.2019.121590 . S2CID 119539402 .
^ Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014-05-28). "Finite-size effects on return interval distributions for weakest-link-scaling systems" . Physical Review E . 89 (5): 052142. arXiv :1308.1881 . Bibcode :2014PhRvE..89e2142H . doi :10.1103/PhysRevE.89.052142 . ISSN 1539-3755 . PMID 25353774 . S2CID 22310350 .
^ da Silva, Sérgio Luiz E.F. (2021). "κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes". Chaos, Solitons & Fractals . 143 : 110622. Bibcode :2021CSF...14310622D . doi :10.1016/j.chaos.2020.110622 . S2CID 234063959 .
^ da Silva, Sérgio Luiz E. F.; Carvalho, Pedro Tiago C.; de Araújo, João M.; Corso, Gilberto (2020-05-27). "Full-waveform inversion based on Kaniadakis statistics" . Physical Review E . 101 (5): 053311. Bibcode :2020PhRvE.101e3311D . doi :10.1103/PhysRevE.101.053311 . ISSN 2470-0045 . PMID 32575242 . S2CID 219746493 .
^ Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio; Landini, Simone (2016). "κ-generalized models of income and wealth distributions: A survey" . The European Physical Journal Special Topics . 225 (10): 1959– 1984. arXiv :1610.08676 . Bibcode :2016EPJST.225.1959C . doi :10.1140/epjst/e2016-60014-2 . ISSN 1951-6355 . S2CID 125503224 .
^ Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (2012). "A new model of income distribution: the κ-generalized distribution" . Journal of Economics . 105 (1): 63– 91. doi :10.1007/s00712-011-0221-0 . hdl :11393/73598 . ISSN 0931-8658 . S2CID 155080665 .
^ Trivellato, Barbara (2013-09-02). "Deformed Exponentials and Applications to Finance" (PDF) . Entropy . 15 (12): 3471– 3489. Bibcode :2013Entrp..15.3471T . doi :10.3390/e15093471 . ISSN 1099-4300 .
^ Passos, Leandro Aparecido; Cleison Santana, Marcos; Moreira, Thierry; Papa, Joao Paulo (2019). "κ-Entropy Based Restricted Boltzmann Machines" . 2019 International Joint Conference on Neural Networks (IJCNN) . Budapest, Hungary: IEEE. pp. 1– 8. doi :10.1109/IJCNN.2019.8851714 . ISBN 978-1-7281-1985-4 . S2CID 203605811 .
^ Kaniadakis, Giorgio (2013-09-25). "Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions" . Entropy . 15 (12): 3983– 4010. arXiv :1309.6536 . Bibcode :2013Entrp..15.3983K . doi :10.3390/e15103983 . ISSN 1099-4300 .
^ Kaniadakis, G. (2001). "Non-linear kinetics underlying generalized statistics". Physica A: Statistical Mechanics and Its Applications . 296 (3– 4): 405– 425. arXiv :cond-mat/0103467 . Bibcode :2001PhyA..296..405K . doi :10.1016/S0378-4371(01)00184-4 . S2CID 44275064 .
^ da Silva, Sérgio Luiz E. F.; dos Santos Lima, Gustavo Z.; Volpe, Ernani V.; de Araújo, João M.; Corso, Gilberto (2021). "Robust approaches for inverse problems based on Tsallis and Kaniadakis generalised statistics" . The European Physical Journal Plus . 136 (5): 518. Bibcode :2021EPJP..136..518D . doi :10.1140/epjp/s13360-021-01521-w . ISSN 2190-5444 . S2CID 236575441 .
External links