uniquely determines A and conversely, is uniquely determined by A. EA is a Boolean homomorphism from the Borel subsets of R into the latticeQ of self-adjoint projections of H. In analogy with probability theory, given a state S, we introduce the distribution of A under S which is the probability measure defined on the Borel subsets of R by
Similarly, the expected value of A is defined in terms of the probability distribution DA by
Note that this expectation is relative to the mixed state S which is used in the definition of DA.
Remark. For technical reasons, one needs to consider separately the positive and negative parts of A defined by the Borel functional calculus for unbounded operators.
Of particular significance for describing randomness of a state is the von Neumann entropy of Sformally defined by
.
Actually, the operator S log2S is not necessarily trace-class. However, if S is a non-negative self-adjoint operator not of trace class we define Tr(S) = +∞. Also note that any density operator S can be diagonalized, that it can be represented in some orthonormal basis by a (possibly infinite) matrix of the form
and we define
The convention is that , since an event with probability zero should not contribute to the entropy. This value is an extended real number (that is in [0, ∞]) and this is clearly a unitary invariant of S.
Remark. It is indeed possible that H(S) = +∞ for some density operator S. In fact T be the diagonal matrix
T is non-negative trace class and one can show T log2T is not trace-class.
Theorem. Entropy is a unitary invariant.
In analogy with classical entropy (notice the similarity in the definitions), H(S) measures the amount of randomness in the state S. The more dispersed the eigenvalues are, the larger the system entropy. For a system in which the space H is finite-dimensional, entropy is maximized for the states S which in diagonal form have the representation
For such an S, H(S) = log2n. The state S is called the maximally mixed state.
Consider an ensemble of systems described by a Hamiltonian H with average energy E. If H has pure-point spectrum and the eigenvalues of H go to +∞ sufficiently fast, e−r H will be a non-negative trace-class operator for every positive r.
Where β is such that the ensemble average of energy satisfies
and
This is called the partition function; it is the quantum mechanical version of the canonical partition function of classical statistical mechanics. The probability that a system chosen at random from the ensemble will be in a state corresponding to energy eigenvalue is
Under certain conditions, the Gibbs canonical ensemble maximizes the von Neumann entropy of the state subject to the energy conservation requirement.[clarification needed]
For open systems where the energy and numbers of particles may fluctuate, the system is described by the grand canonical ensemble, described by the density matrix
where the N1, N2, ... are the particle number operators for the different species of particles that are exchanged with the reservoir. Note that this is a density matrix including many more states (of varying N) compared to the canonical ensemble.