Share to: share facebook share twitter share wa share telegram print page

Interstellar Mapping and Acceleration Probe

Interstellar Mapping and Acceleration Probe
Artist concept of IMAP imaging the heliospheric boundary.
NamesIMAP
Mission typeHeliosphere research
OperatorApplied Physics Laboratory
Websitehttps://imap.princeton.edu/
Mission duration3 years (planned)[1]
Spacecraft properties
ManufacturerApplied Physics Laboratory
Start of mission
Launch date1 May 2025 (planned)[2]
RocketFalcon 9 Block 5[3]
Launch siteCCSFS, LC-40
ContractorSpaceX
Orbital parameters
Reference systemHeliocentric orbit
RegimeHalo orbit (L1)
Instruments
10 instruments
 

The Interstellar Mapping and Acceleration Probe (IMAP) is a heliophysics mission that will simultaneously investigate two important and coupled science topics in the heliosphere: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. These science topics are coupled because particles accelerated in the inner heliosphere play crucial roles in the outer heliospheric interaction. In 2018, NASA selected a team led by David J. McComas of Princeton University to implement the mission, which is currently planned to launch in late April to late May 2025.[2][4] IMAP will be a Sun-tracking spin-stabilized satellite in orbit about the SunEarth L1 Lagrange point with a science payload of ten instruments. IMAP will also continuously broadcast real-time in-situ data that can be used for space weather prediction.

It is the fifth mission selected in the Solar Terrestrial Probes program, after TIMED, Hinode, STEREO and MMS.[4]

Science

Acceleration of charged particles up to high energy is ubiquitous throughout the universe, occurring at stars, magnetospheres, black holes, neutron stars, supernova remnants, and other locations. The precise processes behind this acceleration are not well understood. There are intermediate suprathermal particles which have energies between the energetic particles and the bulk thermal plasma. Understanding how these particles are energized and form the seed population of the energetic particles is one of the science topics that IMAP will investigate.

The solar wind and its associated magnetic field have blown a bubble in interstellar space called the heliosphere. IMAP will study the heliosphere boundary where the solar wind collides with material from the rest of the galaxy. Using Energetic Neutral Atoms (ENAs), IMAP will image this interaction region from the inner Solar System. In addition, IMAP will also directly measure the neutral particles of the interstellar medium, because they flow through the heliosphere relatively unmodified.

IMAP's science goals are based on the four science objectives specified in the IMAP Announcement of Opportunity (from the outside in):[5]

  • Improve understanding of the composition and properties of the local interstellar medium (LISM).
  • Advance understanding of the temporal and spatial evolution of the boundary region in which the solar wind and the interstellar medium interact.
  • Identify and advance the understanding of processes related to the interactions of the magnetic field of the Sun and the LISM.
  • Identify and advance understanding of particle injection and acceleration processes near the Sun, in the heliosphere and heliosheath.

Mission

Profile

After launch, the spacecraft will take several months to transit to about 1,500,000 km (930,000 mi) away from Earth towards the Sun at what is called the first Lagrange point (L1). The spacecraft will then use on-board propulsion to insert into an approximately 10° x 5° Lissajous orbit around L1, very similar to the orbit of Advanced Composition Explorer (ACE). The baseline mission is 3 years, but all expendables are designed for a lifetime of more than 5 years.[6]

Spacecraft

IMAP is a simple spin-stabilized (~4 RPM) spacecraft with ten instruments. Daily attitude maneuvers will be used to keep the spin axis and top deck (with solar arrays) pointed in the direction of the incoming solar wind, which is a few degrees away from the Sun. In the L1 Lissajous orbit, the rear deck, with its communication antenna, approximately points at the Earth.[6]

Instruments

Particle energy spectra for ions and energetic neutral atoms (inset) at 1 AU and the corresponding particle populations and IMAP instrument ranges.

The ten instruments on IMAP can be grouped into three categories: 1) Energetic neutral atom detectors (IMAP-Lo, IMAP-Hi, and IMAP-Ultra); 2) Charged particle detectors (SWAPI, SWE, CoDICE, and HIT); and 3) Other coordinated measurements (MAG, IDEX, GLOWS).

Shown here (top panel) are oxygen fluences measured at 1 AU by several instruments onboard Advanced Composition Explorer (ACE) during a 3-year period, with representative particle spectra obtained for gradual and impulsive Solar Energetic Particles (SEPs), corotating interaction regions (CIRs), Anomalous Cosmic Rays (ACRs), and Galactic Cosmic Rays (GCRs), and (top panel inset) ion fluxes in the Voyager 1 direction using in situ observations from Voyager and remote ENA observations from Cassini–Huygens and Interstellar Boundary Explorer (IBEX). (Middle panel) SWAPI, CoDICE, and HIT provide comprehensive composition, energy, and angular distributions for all major solar wind species (core and halo), interstellar and inner source pick-up ions, suprathermal, energetic, and accelerated ions from SEPs, interplanetary shocks, as well as ACRs. SWE, CoDICE and HIT also provide energy and angular distributions of the solar wind ion and electron core, halo, strahl, as well as energetic and relativistic electrons up to 1 MeV.[6]

IMAP-Lo

IMAP-Lo is a single-pixel neutral atom imager that gives energy and angle-resolved measurements of ISN atoms (H, He, O, Ne, and D) tracked over >180° in ecliptic longitude and energy resolved global maps of ENA H and O. IMAP-Lo has heritage from the IBEX-Lo on IBEX but provides much larger collection power.[6]

IMAP-Hi

IMAP-Hi consists of two identical, single-pixel high energy ENA Imagers that measure H, He, and heavier ENAs from the outer heliosphere. Each IMAP-Hi Imager is very similar in design to the IBEX-Hi ENA Imager but incorporate key modifications that enable substantially improved resolution, spectral range, and collection power. The instrument also incorporates a time-of-flight (TOF) system for identification of ENA species.[6]

IMAP-Ultra

The IMAP-Ultra instrument images the emission of ENAs produced in the heliosheath and beyond, primarily in H atoms between ~3 and 300 keV, but it is also sensitive to contributions from He and O. Ultra is nearly identical to the Jupiter Energetic Neutral Imager (JENI), in development for flight on the European Space Agency's Jupiter Icy Moon Explorer (JUICE) mission to Jupiter and Ganymede. Ultra's primary differences from JENI are the use of two identical copies, one mounted perpendicular to the IMAP spin axis (Ultra90) and one mounted at 45° from the anti-sunward spin axis (Ultra45) for better sky coverage, and the use of slightly thicker, UV-filtering foils covering the back plane MCPs to reduce backgrounds associated with interstellar Lyman-α photons.[6]

Solar Wind and Pick-up Ion (SWAPI)

The Solar Wind and Pickup Ion (SWAPI) instrument measures solar wind H+ and He++ and interstellar He+ and H+ pick-up ions (PUIs). SWAPI is nearly identical to the New Horizons Solar Wind Around Pluto (SWAP) instrument. SWAPI is a simplification of SWAP, and by removal of SWAP's retarding potential analyzer, significantly increases transmission and improves sensitivity, further enhancing PUI observations.[6]

Solar Wind Electron (SWE)

The Solar Wind Electron (SWE) instrument measures the 3D distribution of solar wind thermal and suprathermal electrons from 1 eV to 5 keV. SWE is based on the heritage Ulysses / SWOOPS, ACE/SWEPAM and Genesis/GEM instruments, with updated electronics based on Van Allen Probes/HOPE. SWE is optimized to measure in situ solar wind electrons at L1 to provide context for the ENA measurements and perform the in situ solar wind observations necessary to understand the local structures that can affect acceleration and transport.[6]

Compact Dual Ion Composition Experiment (CoDICE)

The Compact Dual Ion Composition Experiment (CoDICE) measures charged particles in two separate energy ranges in a compact, combined instrument. CoDICELo is an electrostatic analyzer with a time-of-flight versus energy (TOF/E) subsystem to measure the 3D velocity distribution functions (VDFs) and ionic charge state and mass composition of ~0.5–80 keV/q ions. CoDICEHi uses the common TOF/E subsystem to measure the mass composition and arrival direction of ~0.03–5 MeV/nuc ions and ~20–600 keV electrons.[6]

High-energy Ion Telescope (HIT)

The High-energy Ion Telescope (HIT) uses silicon solid-state detectors to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over a species-dependent energy range from ~2 to ~40 MeV/nuc. HIT, heavily based on the Low Energy Telescope (LET) on the Solar Terrestrial Relations Observatory (STEREO), delivers full-sky coverage with a large geometry factor. A portion of the HIT viewing area is also optimized to measure 0.5 - 1.0 MeV electrons.[6]

Magnetometer (MAG)

The IMAP magnetometer (MAG) consists of a pair of identical triaxial fluxgate magnetometers that measure the 3D interplanetary magnetic field. Both magnetometers are mounted on a 1.8 m boom, one on the end and the other in an intermediate position. This configuration, through gradiometry, reduces the effect of spacecraft magnetic fields on the measurements of the instrument by dynamically removing the spacecraft field. The MAG are based on the Magnetospheric Multiscale Mission magnetometers.[6]

Interstellar Dust Experiment (IDEX)

The Interstellar Dust Experiment (IDEX) is a high-resolution dust analyzer that provides the elemental composition, speed and mass distributions of interstellar dust particles. IDEX's sensor head has a large effective target area (700 cm2 [110 sq in]), which allows it to collect a statistically significant number of dust impacts (> 100/year).[6] This instrument was constructed at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder.[7]

GLObal solar Wind Structure (GLOWS)

The GLObal Solar Wind Structure (GLOWS) is a non-imaging single-pixel Lyman-α photometer that will be used to observe the sky distribution of the helioglow to better understand the evolution of the solar wind structure. The helioglow is formed by the interaction between interstellar neutral hydrogen (ISN H) and solar photons in a specific ultraviolet region called the Lyman-α waveband.

Photons enter the detector through a collimator with a baffle that restricts the photons to those only from GLOWS’ field of view (FOV). A spectral filter allows only photons found in the Lyman-α wavelength band into a channel electron multiplier (CEM) detector that counts them. GLOWS’ FOV shifts with IMAP's daily spin axis redirection, allowing for sequential observations of the structure of the solar wind from separate locations around the Sun. The Lyman-α photon counts from these observations can be used to build a more comprehensive picture of the solar wind structure and how it changes through the solar cycles.

GLOWS design and assembly is led by the Space Research Center, Polish Academy of Sciences, Warsaw, Poland (CBK PAN).[8][9]

[6]

Communications

Nominally, IMAP will have two 4-hour contacts per week through the NASA Deep Space Network (DSN). This is sufficient to upload any commands, download the week's worth of science data and housekeeping, and perform spacecraft ranging required for navigation. DSN will communicate with the IMAP Mission Operation Center (MOC) at Johns Hopkins University Applied Physics Laboratory, which will operate the spacecraft. All science and ancillary data will pass through the MOC to the Science Operations Center (SOC) at LASP.[7] The IMAP SOC at LASP will be responsible for all aspects of instrument operations: planning, commanding, health and status monitoring, anomaly response, and sustaining engineering for the instruments. The SOC will also handle science data processing (including data calibration, validation and preliminary analysis), distribution, archiving, and maintaining the IMAP data management plan. Science data will be produced centrally using algorithms, software, and calibration data provided and managed by each instrument team.

All science and other data will be shared with the heliophysics community as rapidly as practical with an open data policy compliant with the NASA Heliophysics Science Data Management Policy. The NASA Space Physics Data Facility (SPDF) is the final archive for IMAP, with regular transfer of data to the SPDF so that the data can be made available through their Coordinated Data Analysis Web (CDAWeb) site.[6]

Space weather data

IMAP will supply critical real-time space weather data through its "IMAP Active Link for Real-Time" or I-ALiRT. IMAP will continuously broadcast a small subset (500 bit/s) of the science data for I-ALiRT to supporting ground stations around the world when not in contact with the DSN. During DSN tracks, the flight system includes the space weather data in the full-rate science data stream, which the MOC receives from the DSN and forwards to the SOC. In either case, the SOC processes these real-time observations to create the data products required by the space weather community. Data include all of the important parameters currently provided by Advanced Composition Explorer (ACE), but at significantly higher cadence, and also include several new key parameters.[6]

Management

This is the fifth mission in NASA's Solar Terrestrial Probes program.[10] The Heliophysics Program Office at NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the STP program for the agency's Heliophysics Science Division in Washington, D.C.

The mission's principal investigator is David J. McComas of Princeton University. The Johns Hopkins University's Applied Physics Laboratory in Laurel, Maryland, will provide project management.[4]

The mission is cost-capped at US$564 million, excluding cost for the launch on a SpaceX Falcon 9 launch vehicle from Cape Canaveral Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station (CCSFS) in Florida.[11] As of April 2020, the preliminary total cost of the mission is estimated to be US$707.7 million to US$776.3 million.[1]

Missions of Opportunity

NASA plans on including an EELV Secondary Payload Adapter (ESPA) (Evolved expendable launch vehicle) Grande ring below the IMAP spacecraft, which will give the opportunity for 4 or 5 secondary payloads to ride along with the IMAP launch.[5] Deployment of the secondary payloads will occur after IMAP deployment into a transfer orbit to the Earth-Sun L1 Lagrange point. Some of the slots may be used by other divisions in the Science Mission Directorate and some may be used by other government agencies. Two opportunities for slots were competed for the Heliophysics Science Division as part of the Third Stand Alone Missions of Opportunity Notice (SALMON-3) Program Element Appendix (PEA), with proposals for both due on 30 November 2018. Selection for Phase A studies should be announced in 2019.[needs update]

Science opportunity

The Announcement of Opportunity for the 2018 Heliophysics Science Missions of Opportunity (MoO) included the option of proposing a Small Complete Mission (SCM) to utilize the IMAP ESPA Grande to launch a secondary payload. Up to two ports on the ESPA Grande ring may be allocated for Science MoOs. The payloads are designated as Class D as defined in NPR 8705.4.[12]

TechDemo opportunity

The Announcement of Opportunity for the 2018 Heliophysics Technology Demonstration (TechDemo) Missions of Opportunity requested SCM proposals for spaceflight demonstration of innovative medium Technology Readiness Level (TRL) technologies that enable significant advances in NASA's Heliophysics Science Objectives and Goals. TechDemo investigations must be proposed for flight as a secondary payload with the IMAP mission. Up to two ports on the ESPA Grande ring may be allocated for TechDemo. The payloads are designated as Class D as defined in NPR 8705.4. Down-selection[clarification needed] is targeted for the third quarter FY 2020.[13] [needs update]

See also

References

  1. ^ a b "GAO-20-405, NASA: Assessments of Major Projects" (PDF). Government Accountability Office. 29 April 2020. p. 39. Retrieved 30 April 2020. Public Domain This article incorporates text from this source, which is in the public domain.
  2. ^ a b "NASA's Interstellar Mapping and Acceleration Probe Passes Key Decision Point-D". NASA. 30 November 2023. Retrieved 31 March 2024. Public Domain This article incorporates text from this source, which is in the public domain.
  3. ^ "NASA Awards Launch Services Contract for IMAP Mission" (Press release). NASA. 25 September 2020. Retrieved 25 September 2020.Public Domain This article incorporates text from this source, which is in the public domain.
  4. ^ a b c "NASA Selects Mission to Study Solar Wind Boundary of Outer Solar System". NASA. 1 June 2018. Retrieved 5 June 2018. Public Domain This article incorporates text from this source, which is in the public domain.
  5. ^ a b "Announcement of Opportunity for Interstellar Mapping and Acceleration Probe" (PDF). NASA. 1 September 2017. Retrieved 8 January 2019. Public Domain This article incorporates text from this source, which is in the public domain.
  6. ^ a b c d e f g h i j k l m n o McComas, D.J. (December 2018). "Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission". Space Science Reviews. 214 (8): 116. Bibcode:2018SSRv..214..116M. doi:10.1007/s11214-018-0550-1. hdl:1721.1/118798.
  7. ^ a b "Quick Facts: Interstellar Mapping and Acceleration Probe (IMAP)". LASP. Archived from the original on 19 June 2022. Retrieved 23 June 2022.
  8. ^ "GLOWS". GLOWS. Retrieved 10 April 2023.
  9. ^ "GLOWS (Global Solar Wind Structure)". Interstellar Mapping and Acceleration Probe (IMAP) mission at Princeton. Retrieved 10 April 2023.
  10. ^ "Solar Terrestrial Probes". science.nasa.gov. NASA. Retrieved 5 June 2018. Public Domain This article incorporates text from this source, which is in the public domain.
  11. ^ "NASA Awards Launch Services Contract for IMAP Mission". NASA. 25 September 2020. Retrieved 25 September 2020. Public Domain This article incorporates text from this source, which is in the public domain.
  12. ^ "Announcement of Opportunity for 2018 Heliophysics Science Mission of Opportunity" (PDF). NASA. 26 September 2017. Retrieved 9 January 2019. Public Domain This article incorporates text from this source, which is in the public domain.
  13. ^ "Announcement of Opportunity for 2018 Heliophysics Technology Demonstration Mission of Opportunity" (PDF). NASA. Retrieved 9 January 2019. Public Domain This article incorporates text from this source, which is in the public domain.

External links

Baca informasi lainnya yang berhubungan dengan : article

Article 19 Article 20

Read other articles:

Behind Every StarPoster promosiNama alternatifMethod Ent.[1][2]Hangul연예인 매니저로 살아남기 Hanja演藝人 매니저로 살아남記 Arti harfiahSurviving as a Celebrity ManagerAlih AksaraYeon-yein Maenijeolo Sal-anamgi GenreRomansadrama komediBerdasarkanCall My Agent! oleh Fanny HerreroPengembangHong Ki-sung (tvN)Kim Young-Kyu (Studio Dragon)Ditulis olehPark So-youngLee ChanSutradaraBaek Seung-ryongPemeranLee Seo-jinKwak Sun-youngSeo Hyun-wooJoo Hyun-youngMusikGaemi…

Overview of and topical guide to the metric system The metric system is for all people for all time. (Condorcet 1791) Four objects used in making measurements in everyday situations that have metric calibrations are shown: a tape measure calibrated in centimetres, a thermometer calibrated in degrees Celsius, a kilogram mass, and an electrical multimeter which measures volts, amps and ohms. The following outline is provided as an overview of and topical guide to the metric system: Metric system &…

Загул Дмитро Юрійович 1990-го року, до столітнього ювілею з дня народження Дмитра Загула, за ініціативи чернівецького відділення Спілки письменників України та сільської громади села Мілієве, було засновано літературну премію ім. Загула, яка з часу заснування щороку присуд…

Cet article est une ébauche concernant la politique et la Guinée. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ministère des affaires étrangères, de l'Intégration africaine et des guinéens établie à l'étrangerHistoireFondation 9 octobre 2021 (Ministère des affaires étrangères, de la coopération internationale, de l'Intégration africaine et des guinéens de l'étranger)Prédécesseur Ministère des …

Tino SidinLahir(1925-11-25)25 November 1925Kota Tebing Tinggi, Sumatera Utara, Hindia BelandaMeninggal29 Desember 1995(1995-12-29) (umur 70)Jakarta,IndonesiaMakamBantul, Yogyakarta[1]KebangsaanIndonesiaNama lainPak TinoPekerjaanSenimanpelukisguru seni rupaTahun aktif1968–1995Dikenal atasPembawa acara Gemar Menggambar Tino Sidin (25 November 1925 – 29 Desember 1995) adalah seorang pelukis dan guru gambar yang terkenal dengan acaranya di stasiun TVRI era 80…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Da…

Arca Dewi Ammawaru Ammawaru (Tamil :அம்மன்) adalah salah satu dewi kuno dalam kepercayaan agama Hindu. Dewi ini diyakini sebagai dewi yang memunculkan benih telur yang menetaskan Brahma, Siwa dan Wisnu. Amma artinya ibu. Dia diperkirakan telah ada sebelum permulaan waktu. Sebuah situs pemujaan yang terkenal untuk Ammavaru adalah Kuil Sri Kshethra Dharmasthala Manjunatha Swamy, yang terletak di Dharmasthala di Dakshina Kannada, Karnataka, India. Dia dipuja bersama dengan bentuk Syiwa …

Letnan Gubernur WashingtonStempel letnan gubernurPetahanaDenny Hecksejak 13 Januari 2021GelarThe HonourableMasa jabatan4 tahunPejabat perdanaCharles E. LaughtonDibentuk11 November 1889SuksesiPertamaGaji$117.300 (2020)[1]Situs webltgov.wa.gov Letnan Gubernur Washington adalah jabatan terpilih di negara bagian Washington, AS. Petahana saat ini adalah Denny Heck, seorang Demokrat yang memulai masa jabatannya pada Januari 2021. Letnan gubernur menjabat sebagai presiden Senat Negara Bagi…

Teguh DarmawanWaaskomlek Kasau ke-3PetahanaMulai menjabat 2 Oktober 2023PendahuluPenny Rajendra Informasi pribadiLahir24 Maret 1968 (umur 55)Tasikmalaya, Jawa BaratAlma materAkademi Angkatan Udara (1989)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan UdaraMasa dinas1989—sekarangPangkat Marsekal Pertama TNISatuanKorps ElektronikaSunting kotak info • L • B Marsekal Pertama TNI Ir. Teguh Darmawan, M.T. (lahir 24 Maret 1968) adalah seorang perwira tinggi…

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. مركبة فضائية مبنية من نموذج ستانفورد المستدير، رسمة فنية لناسا, عام 1975. استعمار الفضاء أو غزو الفضاء هو مشروع ملاحي فضائي للإقامة البشرية الدائمة وباكتفاءٍ ذاتيّ تامّ خارج الأ…

Stasiun Maos KD12JC01 Stasiun Maos, 2019LokasiJalan Stasiun MaosKarangreja, Maos, Cilacap, Jawa Tengah 53272IndonesiaKetinggian+8 mOperatorKereta Api IndonesiaDaerah Operasi V PurwokertoLetak dari pangkal km 390+078 lintas Bogor-Bandung-Banjar-Kutoarjo-Yogyakarta km 0+000 lintas Maos-Cilacap km 0+000 lintas Maos-Purwokerto Timur-Banjarnegara-Wonosobo[1] Jumlah peron4 (satu peron sisi dan satu peron pulau yang sama-sama agak rendah)Jumlah jalur7 (jalur 2: sepur lurus)Informasi lainKode st…

Politics of Slovenia EU Member State(Eurozone Member State)(Schengen Area Member State)NATO Member StateCouncil of Europe Member StateOECD Member State Constitution Constitutional Court Constitution of Slovenia Executive President of the Republic Nataša Pirc Musar Prime Minister Robert Golob Government Golob Cabinet Legislature Parliament National Council President Marko Lotrič National Assembly Speaker Urška Klakočar Zupančič 9th National Assembly Judiciary Supreme Court of Slovenia Other…

American politician Clifford MarshallNorfolk County, Massachusetts SheriffIn office1975–1996Preceded byCharles HedgesSucceeded byJohn H. FloodMember of the Massachusetts House of Representatives from the 2nd Norfolk DistrictIn office1969–1975Preceded byArthur TobinSucceeded byThomas F. Brownell Personal detailsBorn(1937-12-14)December 14, 1937Quincy, MassachusettsDiedAugust 29, 1996(1996-08-29) (aged 58)Quincy, MassachusettsPolitical partyDemocraticAlma materSuffolk UniversityOccupation…

Orden de Klement Gottwald por la Construcción de la Patria Socialista Medalla de la orden.Otorgada por República Socialista de ChecoslovaquiaTipo OrdenOtorgada por Sobresalientes y extraordinarios méritos en pos del sistema socialista en Checoslovaquia, obtenidos en la construcción del Estado o en batallas políticas, económicas, sociales o culturales, o en el incremento de la capacidad de defensa del Estado o en combate contra el enemigo interno.Estado No se entrega.EstadísticasEstab…

Ranko MarinkovićBorn(1913-02-22)22 February 1913Komiža, Kingdom of Dalmatia, Austria-HungaryDied28 January 2001(2001-01-28) (aged 87)Zagreb, CroatiaResting placeKomiža, Croatia[1]OccupationNovelist, dramatistLanguageCroatianNationalityCroatianPeriod1939–1995Notable worksRuke (1953), Cyclops (1965) Ranko Marinković (22 February 1913 – 28 January 2001) was a Croatian novelist and dramatist. Born in Komiža on the island of Vis (then a part of Austria-Hungary), Marinković's ch…

Degree to which elements within a module belong together In computer programming, cohesion refers to the degree to which the elements inside a module belong together.[1] In one sense, it is a measure of the strength of relationship between the methods and data of a class and some unifying purpose or concept served by that class. In another sense, it is a measure of the strength of relationship between the class's methods and data themselves. Cohesion is an ordinal type of measurement and…

Historic district in Michigan, United States United States historic placeWillis–Selden Historic DistrictU.S. National Register of Historic PlacesU.S. Historic district Cass Avenue, north of AlexandrineLocationDetroit, Michigan, U.S.Coordinates42°20′57″N 83°3′52″W / 42.34917°N 83.06444°W / 42.34917; -83.06444Built1870ArchitectmultipleArchitectural styleColonial Revival, Beaux Arts, Early CommercialMPSCass Farm MPSNRHP reference No.97001478[…

De Kleilânsmole, MarrumDe Kleilânsmole, August 2007.OriginMill nameDe KleilânsmoleMill locationHoge Herenweg nabij nr. 14, 9073 TT MarrumCoordinates53°19′22″N 5°46′41″E / 53.3228°N 5.7781°E / 53.3228; 5.7781Operator(s)Stichting De Fryske MoleYear built1865InformationPurposeDrainage millTypeSmock millStoreysTwo-storey smockBase storeysSingle-storey baseNo. of sailsFour sailsType of sailsCommon sailsWindshaftCast ironWindingTailpole and winchAuxiliary powerEl…

Amniocentesis(procedimiento médico) Clasificación y recursos externos[editar datos en Wikidata] La amniocentesis es una prueba prenatal común en la cual se extrae una pequeña muestra del líquido amniótico que rodea al feto para analizarla. Características La amniocentesis se utiliza con frecuencia durante el segundo trimestre de embarazo (por lo general entre 15 y 18 semanas después del último período menstrual de la mujer)[1]​ para diagnosticar o, con mucha mayor frecu…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Patumbak, Deli Serdang – berita · surat kabar · buku · cendekiawan · JSTOR PatumbakKecamatanNegara IndonesiaProvinsiSumatera UtaraKabupatenDeli SerdangPemerintahan • Camat-Populasi •…

Kembali kehalaman sebelumnya