Geometric function theory

Geometric function theory is the study of geometric properties of analytic functions. A fundamental result in the theory is the Riemann mapping theorem.

Topics in geometric function theory

The following are some of the most important topics in geometric function theory:[1][2]

Conformal maps

A rectangular grid (top) and its image under a conformal map f (bottom). It is seen that f maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°.

A conformal map is a function which preserves angles locally. In the most common case the function has a domain and range in the complex plane.

More formally, a map,

with

is called conformal (or angle-preserving) at a point if it preserves oriented angles between curves through with respect to their orientation (i.e., not just the magnitude of the angle). Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature.

Quasiconformal maps

In mathematical complex analysis, a quasiconformal mapping, introduced by Grötzsch (1928) and named by Ahlfors (1935), is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity.

Intuitively, let f : D → D′ be an orientation-preserving homeomorphism between open sets in the plane. If f is continuously differentiable, then it is K-quasiconformal if the derivative of f at every point maps circles to ellipses with eccentricity bounded by K.

If K is 0, then the function is conformal.

Analytic continuation

Analytic continuation of natural logarithm (imaginary part)

Analytic continuation is a technique to extend the domain of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent.

The step-wise continuation technique may, however, come up against difficulties. These may have an essentially topological nature, leading to inconsistencies (defining more than one value). They may alternatively have to do with the presence of mathematical singularities. The case of several complex variables is rather different, since singularities then cannot be isolated points, and its investigation was a major reason for the development of sheaf cohomology.

Geometric properties of polynomials and algebraic functions

Topics in this area include Riemann surfaces for algebraic functions and zeros for algebraic functions.

Riemann surface

A Riemann surface, first studied by and named after Bernhard Riemann, is a one-dimensional complex manifold. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

The main point of Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm.

Extremal problems

Topics in this area include "Maximum principle; Schwarz's lemma, Lindelöf principle, analogues and generalizations".[3]

Univalent and multivalent functions

A holomorphic function on an open subset of the complex plane is called univalent if it is injective.

One can prove that if and are two open connected sets in the complex plane, and

is a univalent function such that (that is, is surjective), then the derivative of is never zero, is invertible, and its inverse is also holomorphic. More, one has by the chain rule

Alternate terms in common use are schlicht( this is German for plain, simple) and simple. It is a remarkable fact, fundamental to the theory of univalent functions, that univalence is essentially preserved under uniform convergence.

Important theorems

Riemann mapping theorem

Let be a point in a simply-connected region and having at least two boundary points. Then there exists a unique analytic function mapping bijectively into the open unit disk such that and .

Although Riemann's mapping theorem demonstrates the existence of a mapping function, it does not actually exhibit this function. An example is given below.

Illustration of Riemann Mapping Theorem

In the above figure, consider and as two simply connected regions different from . The Riemann mapping theorem provides the existence of mapping onto the unit disk and existence of mapping onto the unit disk. Thus is a one-to-one mapping of onto . If we can show that , and consequently the composition, is analytic, we then have a conformal mapping of onto , proving "any two simply connected regions different from the whole plane can be mapped conformally onto each other."

Schwarz's Lemma

The Schwarz lemma, named after Hermann Amandus Schwarz, is a result in complex analysis about holomorphic functions from the open unit disk to itself. The lemma is less celebrated than stronger theorems, such as the Riemann mapping theorem, which it helps to prove. It is however one of the simplest results capturing the rigidity of holomorphic functions.

Statement

Schwarz Lemma. Let D = {z : |z| < 1} be the open unit disk in the complex plane C centered at the origin and let f : DD be a holomorphic map such that f(0) = 0.

Then, |f(z)| ≤ |z| for all z in D and |f′(0)| ≤ 1.

Moreover, if |f(z)| = |z| for some non-zero z or if |f′(0)| = 1, then f(z) = az for some a in C with |a| (necessarily) equal to 1.

Maximum principle

The maximum principle is a property of solutions to certain partial differential equations, of the elliptic and parabolic types. Roughly speaking, it says that the maximum of a function in a domain is to be found on the boundary of that domain. Specifically, the strong maximum principle says that if a function achieves its maximum in the interior of the domain, the function is uniformly a constant. The weak maximum principle says that the maximum of the function is to be found on the boundary, but may re-occur in the interior as well. Other, even weaker maximum principles exist which merely bound a function in terms of its maximum on the boundary.

Riemann-Hurwitz formula

the Riemann–Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ramified covering of the other. It therefore connects ramification with algebraic topology, in this case. It is a prototype result for many others, and is often applied in the theory of Riemann surfaces (which is its origin) and algebraic curves.

Statement

For an orientable surface S the Euler characteristic χ(S) is

where g is the genus (the number of handles), since the Betti numbers are 1, 2g, 1, 0, 0, ... . In the case of an (unramified) covering map of surfaces

that is surjective and of degree N, we should have the formula

That is because each simplex of S should be covered by exactly N in S′ — at least if we use a fine enough triangulation of S, as we are entitled to do since the Euler characteristic is a topological invariant. What the Riemann–Hurwitz formula does is to add in a correction to allow for ramification (sheets coming together).

Now assume that S and S′ are Riemann surfaces, and that the map π is complex analytic. The map π is said to be ramified at a point P in S′ if there exist analytic coordinates near P and π(P) such that π takes the form π(z) = zn, and n > 1. An equivalent way of thinking about this is that there exists a small neighborhood U of P such that π(P) has exactly one preimage in U, but the image of any other point in U has exactly n preimages in U. The number n is called the ramification index at P and also denoted by eP. In calculating the Euler characteristic of S′ we notice the loss of eP − 1 copies of P above π(P) (that is, in the inverse image of π(P)). Now let us choose triangulations of S and S′ with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics. Then S′ will have the same number of d-dimensional faces for d different from zero, but fewer than expected vertices. Therefore, we find a "corrected" formula

(all but finitely many P have eP = 1, so this is quite safe). This formula is known as the Riemann–Hurwitz formula and also as Hurwitz's theorem.

References

  1. ^ Hurwitz-Courant, Vorlesunger über allgemeine Funcktionen Theorie, 1922 (4th ed., appendix by H. Röhrl, vol. 3, Grundlehren der mathematischen Wissenschaften. Springer, 1964.)
  2. ^ MSC classification for 30CXX, Geometric Function Theory, retrieved from http://www.ams.org/msc/msc2010.html on September 16, 2014.
  3. ^ MSC80 in the MSC classification system
  • Ahlfors, Lars (1935), "Zur Theorie der Überlagerungsflächen", Acta Mathematica (in German), 65 (1): 157–194, doi:10.1007/BF02420945, ISSN 0001-5962, JFM 61.0365.03, Zbl 0012.17204.
  • Grötzsch, Herbert (1928), "Über einige Extremalprobleme der konformen Abbildung. I, II.", Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Classe (in German), 80: 367–376, 497–502, JFM 54.0378.01.
  • Hurwitz-Courant, Vorlesunger über allgemeine Funcktionen Theorie, 1922 (4th ed., appendix by H. Röhrl, vol. 3, Grundlehren der mathematischen Wissenschaften. Springer, 1964.)
  • Krantz, Steven (2006). Geometric Function Theory: Explorations in Complex Analysis. Springer. ISBN 0-8176-4339-7.
  • Bulboacă, T.; Cho, N. E.; Kanas, S. A. R. (2012). "New Trends in Geometric Function Theory 2011" (PDF). International Journal of Mathematics and Mathematical Sciences. 2012: 1–2. doi:10.1155/2012/976374.
  • Ahlfors, Lars (2010). Conformal Invariants: Topics in Geometric Function Theory. AMS Chelsea Publishing. ISBN 978-0821852705.

Read other articles:

Rosy LoversPoster promosi untuk Rosy LoversGenreRomansa Keluarga Komedi DramaDitulis olehKim Sa-kyungSutradaraYoon Jae-moon Jung Ji-inPemeranLee Jang-woo Han SunhwaPenata musikJeon Chang-yeopNegara asalKorea SelatanBahasa asliKoreaJmlh. episode52ProduksiProduser eksekutifKim Dong-gu Byun Jong-eunProduserNoh Do-chul Kwak Ji-hoonLokasi produksiKoreaSinematografiKim Il-manPenyuntingKim Gyu-dongDurasi60 menit Sabtu dan Minggu pukul 20:45 (WSK)Rumah produksiDK E&M Yedang EntertainmentRil...

 

Fresno California TempleNumber78DedicationApril 9, 2000, by Gordon B. HinckleySite2.34 acres (0.95 ha)Floor area10,700 sq ft (990 m2)Height71 ft (22 m)Official website • News & imagesChurch chronology ←Palmyra New York Temple Fresno California Temple →Medford Oregon Temple Additional informationAnnouncedJanuary 8, 1999, by Gordon B. HinckleyGroundbreakingMarch 20, 1999, by John B. DicksonOpen houseMarch 25 – April 4, 2000Current presidentCliff...

 

Knut Magne Valle Información personalOtros nombres Phantom FX, MøllarnNacimiento 5 de agosto de 1974 (49 años)Gjerstad, Noruega Nacionalidad NoruegaInformación profesionalOcupación Guitarrista, compositor, productorAños activo 1995 - ActualidadSeudónimo Phantom FX, MøllarnGénero Metal góticoBlack metal sinfónicoMetal industrialMúsica electrónicaInstrumento GuitarraMiembro de Arcturus [editar datos en Wikidata] Knut Magne Valle (nacido el 5 de agosto de 1974 en...

Wappen Deutschlandkarte 48.81083333333311.500833333333389Koordinaten: 48° 49′ N, 11° 30′ O Basisdaten Bundesland: Bayern Regierungsbezirk: Oberbayern Landkreis: Eichstätt Höhe: 389 m ü. NHN Fläche: 55,69 km2 Einwohner: 9875 (31. Dez. 2022)[1] Bevölkerungsdichte: 177 Einwohner je km2 Postleitzahl: 85092 Vorwahl: 08456 Kfz-Kennzeichen: EI Gemeindeschlüssel: 09 1 76 139 LOCODE: DE KHG Marktgliederung: 6 Geme...

 

Gedsted Parochie van Denemarken Situering Bisdom Bisdom Viborg Gemeente Vesthimmerland Coördinaten 56°41'16,001NB, 9°20'2,000OL Algemeen Inwoners (2004) 1147 Leden Volkskerk (2004) 1081 Overig Kerken Gedsted Kirke Proosdij Vesthimmerlands Provsti Pastoraat Gedsted-Fjelsø Foto's Portaal    Denemarken Gedsted is een parochie van de Deense Volkskerk in de Deense gemeente Vesthimmerland. De parochie maakt deel uit van het bisdom Viborg en telt 1081 kerkleden op een bevolking van 114...

 

Гнат Рошкович Народження 28 вересня 1854(1854-09-28)[1][2][3]Славковце, Михайлівці, Кошицький край, СловаччинаСмерть 29 листопада 1915(1915-11-29) (61 рік)  Будапешт, Австро-УгорщинаПоховання КерепешіКраїна  Австро-УгорщинаЖанр сакральний живопис, портрет, пейзажНавчання ...

1976 Canadian film by William Fruet This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Death Weekend – news · newspapers · books · scholar · JSTOR (May 2018) Death Weekend1977 USA film poster (AIP)Directed byWilliam FruetWritten byWilliam FruetProduced byIvan ReitmanStarringBrenda VaccaroDon StroudChu...

 

Indian film series Singam Franchiseofficial logoCreated byHariOriginal workSingamOwnerSun Pictures2D EntertainmentStudio GreenFilms and televisionFilm(s)Singam (2010)Singam II (2013)Si3 (2017) Singam (transl. Lion) is an Indian Tamil-language action film series centered around the title character Duraisingam, a tempered honest police officer who aims to eliminate corruption from the society.[1] The film series began in 2010 with the release of Singam, directed by Hari and starri...

 

Species of plant Piper retrofractum Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Magnoliids Order: Piperales Family: Piperaceae Genus: Piper Species: P. retrofractum Binomial name Piper retrofractumVahl Synonyms Piper officinarum (Miq.) C.DC. Piper retrofractum, the Balinese long pepper or Javanese long pepper, is a flowering vine in the family Piperaceae, cultivated for its fruit, which is usually dried and used as a spice and seasoning. The ...

British fragrance brand Jo Malone LondonTypeSubsidiaryIndustryCosmeticsFoundedLondon, England (1990)FoundersJo Malone CBEProductsFragrance, Bath & BodyParentEstée Lauder Companies (1999–present)WebsiteJo Malone London Jo Malone boutique in Norwich, England Jo Malone Store in Cardiff, Wales Jo Malone London is a British multinational cosmetics company, perfume and scented candle brand,[1] founded by Jo Malone in 1990.[2] It has been owned since 1999 by Estée Lauder.[...

 

Sekelompok bluefin trevally mendatangi sekelompok anchovies yang membentuk bola impan jika mereka merasa terancam Bola umpan terjadi saat sekawanan ikan kecil membentuk formasi bundar. Tindakan tersebut adalah sebuah tindakan pertahanan terakhir yang dilakukan oleh ikan berkelompok kecil saat mereka terancam oleh para predator. Ikan berkelompok kecil disantap oleh banyak jenis predator, dan untuk alasan itu, mereka disebut ikan umpan atau ikan mangsa. Catatan Referensi Burgess EA (2006) Forag...

 

Шипіцин Олег Олександровичрос. Олег Александрович Шипицин Народився 17 липня 1974(1974-07-17)Республіка Комі, РРФСР, СРСРПомер 18 березня 2022(2022-03-18) (47 років)Маріуполь, Донецька область, УкраїнаПоховання КосіхаДіяльність військовослужбовецьУчасник Громадянська війна в Таджикис...

ثنائي أكسيد الكبريت ثنائي أكسيد الكبريت ثنائي أكسيد الكبريت الاسم النظامي (IUPAC) ثنائي أكسيد الكبريت أسماء أخرى ثاني أكسيد الكبريت، أكسيد الكبريت الرباعي المعرفات رقم CAS 7446-09-5 بوب كيم 1119  مواصفات الإدخال النصي المبسط للجزيئات O=S=O[1]  المعرف الكيميائي الدولي InChI=1S/O2S/c1...

 

K.P.H. NotoprojoK. P. H. NotoprojoInformasi latar belakangNama lahirWasi JolodoroNama lainKi CokrowasitoK.R.T. WasitodipuroK.R.T. WasitodiningratLahir(1909-03-17)17 Maret 1909 Yogyakarta, Hindia BelandaGenreGamelan, Musik Rakyat, TradisionalPekerjaanMusisi karawitan, Komposer, Dosen, Penata SendratariInstrumenGamelan, Rebab, Saron, Kendhang, BonangTahun aktif1934 - 1992LabelNonesuch Records, CMP RecordsArtis terkaitOrkes Gamelan Pura Paku Alaman, Daya Pradangga, Mardi Wirama Wikiquote memilik...

 

Chinese Sports Wear Company Anta Sports Products LimitedNative name安踏体育用品有限公司TypePublicTraded asSEHK: 2020Hang Seng IndexISINKYG040111059IndustrySports equipment, textileFounded1991 (1991)FounderDing ShizhongHeadquartersJinjiang, Fujian, ChinaArea servedWorldwideKey peopleDing Shizhong (Chairman)ProductsSneakers, clothing, accessoriesRevenue US$7.7 billion (2021)[1]OwnerAnta International (BVI) (61.84%)Public (38.16%)SubsidiariesAmer SportsWebsiteanta.com...

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Outubro de 2020) Star Wars: Episódio V - O Império Contra-Ataca[1][2] Star Wars: Episódio V – O Império Contra-AtacaPôster promocional feito por Roger Kastel No Brasil Guerra nas Estrelas: O Império Contra-Ataca[3] Em Portugal Star...

 

У этого термина существуют и другие значения, см. Нимфа (значения). «Нимфе» SMS[~ 1] Nymphe «Нимфе» в 1899 Служба Германия Класс и тип судна Бронепалубный крейсер типа «Газелле» Изготовитель Germaniawerft, Киль Строительство начато 1898 Спущен на воду 21 ноября 1899 Введён в эксплуатацию...

 

First airline of the Kingdom of Italy Aero Espresso Italiana flew the Macchi 24bis with 8 passengers in 1927 The Aero Espresso Italiana,[1] called also AEI and Aeroespresso del Levante, was the first airline of the Kingdom of Italy. It was created as a private company for the route Brindisi-Athens-Istanbul; later a second route to Rodhes was added[2] History The airline company, founded in Rome in December 1923, was operating with flights only from 1926. It was based in Rome a...

Eastern Catholic eparchy in Maharashtra, India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Syro-Malabar Catholic Eparchy of Chanda – news · newspapers · books · scholar · JSTOR (September 2019) (Learn how and when to remove this template message) Eparchy of Chandaचांदा च्या बिशप...

 

1992 book by Denise Giardina This article may contain an excessive amount of intricate detail that may interest only a particular audience. Please help by spinning off or relocating any relevant information, and removing excessive detail that may be against Wikipedia's inclusion policy. (August 2022) (Learn how and when to remove this template message)This article may be written from a fan's point of view, rather than a neutral point of view. Please clean it up to conform to a higher standard...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!