Surjective function

In mathematics, a surjective function (also known as surjection, or onto function /ˈɒn.t/) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : XY, the codomain Y is the image of the function's domain X.[1][2] It is not required that x be unique; the function f may map one or more elements of X to the same element of Y.

The term surjective and the related terms injective and bijective were introduced by Nicolas Bourbaki,[3][4] a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word sur means over or above, and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain.

Any function induces a surjection by restricting its codomain to the image of its domain. Every surjective function has a right inverse assuming the axiom of choice, and every function with a right inverse is necessarily a surjection. The composition of surjective functions is always surjective. Any function can be decomposed into a surjection and an injection.

Definition

A surjective function is a function whose image is equal to its codomain. Equivalently, a function with domain and codomain is surjective if for every in there exists at least one in with .[1] Surjections are sometimes denoted by a two-headed rightwards arrow (U+21A0 RIGHTWARDS TWO HEADED ARROW),[5] as in .

Symbolically,

If , then is said to be surjective if
.[2][6]

Examples

A non-surjective function from domain X to codomain Y. The smaller yellow oval inside Y is the image (also called range) of f. This function is not surjective, because the image does not fill the whole codomain. In other words, Y is colored in a two-step process: First, for every x in X, the point f(x) is colored yellow; Second, all the rest of the points in Y, that are not yellow, are colored blue. The function f would be surjective only if there were no blue points.
  • For any set X, the identity function idX on X is surjective.
  • The function f : Z → {0, 1} defined by f(n) = n mod 2 (that is, even integers are mapped to 0 and odd integers to 1) is surjective.
  • The function f : RR defined by f(x) = 2x + 1 is surjective (and even bijective), because for every real number y, we have an x such that f(x) = y: such an appropriate x is (y − 1)/2.
  • The function f : RR defined by f(x) = x3 − 3x is surjective, because the pre-image of any real number y is the solution set of the cubic polynomial equation x3 − 3xy = 0, and every cubic polynomial with real coefficients has at least one real root. However, this function is not injective (and hence not bijective), since, for example, the pre-image of y = 2 is {x = −1, x = 2}. (In fact, the pre-image of this function for every y, −2 ≤ y ≤ 2 has more than one element.)
  • The function g : RR defined by g(x) = x2 is not surjective, since there is no real number x such that x2 = −1. However, the function g : RR≥0 defined by g(x) = x2 (with the restricted codomain) is surjective, since for every y in the nonnegative real codomain Y, there is at least one x in the real domain X such that x2 = y.
  • The natural logarithm function ln : (0, +∞) → R is a surjective and even bijective (mapping from the set of positive real numbers to the set of all real numbers). Its inverse, the exponential function, if defined with the set of real numbers as the domain and the codomain, is not surjective (as its range is the set of positive real numbers).
  • The matrix exponential is not surjective when seen as a map from the space of all n×n matrices to itself. It is, however, usually defined as a map from the space of all n×n matrices to the general linear group of degree n (that is, the group of all n×n invertible matrices). Under this definition, the matrix exponential is surjective for complex matrices, although still not surjective for real matrices.
  • The projection from a cartesian product A × B to one of its factors is surjective, unless the other factor is empty.
  • In a 3D video game, vectors are projected onto a 2D flat screen by means of a surjective function.

Properties

A function is bijective if and only if it is both surjective and injective.

If (as is often done) a function is identified with its graph, then surjectivity is not a property of the function itself, but rather a property of the mapping.[7] This is, the function together with its codomain. Unlike injectivity, surjectivity cannot be read off of the graph of the function alone.

Surjections as right invertible functions

The function g : YX is said to be a right inverse of the function f : XY if f(g(y)) = y for every y in Y (g can be undone by f). In other words, g is a right inverse of f if the composition f o g of g and f in that order is the identity function on the domain Y of g. The function g need not be a complete inverse of f because the composition in the other order, g o f, may not be the identity function on the domain X of f. In other words, f can undo or "reverse" g, but cannot necessarily be reversed by it.

Every function with a right inverse is necessarily a surjection. The proposition that every surjective function has a right inverse is equivalent to the axiom of choice.

If f : XY is surjective and B is a subset of Y, then f(f −1(B)) = B. Thus, B can be recovered from its preimage f −1(B).

For example, in the first illustration in the gallery, there is some function g such that g(C) = 4. There is also some function f such that f(4) = C. It doesn't matter that g is not unique (it would also work if g(C) equals 3); it only matters that f "reverses" g.

Surjections as epimorphisms

A function f : XY is surjective if and only if it is right-cancellative:[8] given any functions g,h : YZ, whenever g o f = h o f, then g = h. This property is formulated in terms of functions and their composition and can be generalized to the more general notion of the morphisms of a category and their composition. Right-cancellative morphisms are called epimorphisms. Specifically, surjective functions are precisely the epimorphisms in the category of sets. The prefix epi is derived from the Greek preposition ἐπί meaning over, above, on.

Any morphism with a right inverse is an epimorphism, but the converse is not true in general. A right inverse g of a morphism f is called a section of f. A morphism with a right inverse is called a split epimorphism.

Surjections as binary relations

Any function with domain X and codomain Y can be seen as a left-total and right-unique binary relation between X and Y by identifying it with its function graph. A surjective function with domain X and codomain Y is then a binary relation between X and Y that is right-unique and both left-total and right-total.

Cardinality of the domain of a surjection

The cardinality of the domain of a surjective function is greater than or equal to the cardinality of its codomain: If f : XY is a surjective function, then X has at least as many elements as Y, in the sense of cardinal numbers. (The proof appeals to the axiom of choice to show that a function g : YX satisfying f(g(y)) = y for all y in Y exists. g is easily seen to be injective, thus the formal definition of |Y| ≤ |X| is satisfied.)

Specifically, if both X and Y are finite with the same number of elements, then f : XY is surjective if and only if f is injective.

Given two sets X and Y, the notation X* Y is used to say that either X is empty or that there is a surjection from Y onto X. Using the axiom of choice one can show that X* Y and Y* X together imply that |Y| = |X|, a variant of the Schröder–Bernstein theorem.

Composition and decomposition

The composition of surjective functions is always surjective: If f and g are both surjective, and the codomain of g is equal to the domain of f, then f o g is surjective. Conversely, if f o g is surjective, then f is surjective (but g, the function applied first, need not be). These properties generalize from surjections in the category of sets to any epimorphisms in any category.

Any function can be decomposed into a surjection and an injection: For any function h : XZ there exist a surjection f : XY and an injection g : YZ such that h = g o f. To see this, define Y to be the set of preimages h−1(z) where z is in h(X). These preimages are disjoint and partition X. Then f carries each x to the element of Y which contains it, and g carries each element of Y to the point in Z to which h sends its points. Then f is surjective since it is a projection map, and g is injective by definition.

Induced surjection and induced bijection

Any function induces a surjection by restricting its codomain to its range. Any surjective function induces a bijection defined on a quotient of its domain by collapsing all arguments mapping to a given fixed image. More precisely, every surjection f : AB can be factored as a projection followed by a bijection as follows. Let A/~ be the equivalence classes of A under the following equivalence relation: x ~ y if and only if f(x) = f(y). Equivalently, A/~ is the set of all preimages under f. Let P(~) : AA/~ be the projection map which sends each x in A to its equivalence class [x]~, and let fP : A/~ → B be the well-defined function given by fP([x]~) = f(x). Then f = fP o P(~).

The set of surjections

Given fixed finite sets A and B, one can form the set of surjections AB. The cardinality of this set is one of the twelve aspects of Rota's Twelvefold way, and is given by , where denotes a Stirling number of the second kind.

See also

References

  1. ^ a b "Injective, Surjective and Bijective". www.mathsisfun.com. Retrieved 2019-12-07.
  2. ^ a b "Bijection, Injection, And Surjection | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2019-12-07.
  3. ^ Miller, Jeff, "Injection, Surjection and Bijection", Earliest Uses of Some of the Words of Mathematics, Tripod.
  4. ^ Mashaal, Maurice (2006). Bourbaki. American Mathematical Soc. p. 106. ISBN 978-0-8218-3967-6.
  5. ^ "Arrows – Unicode" (PDF). Retrieved 2013-05-11.
  6. ^ Farlow, S. J. "Injections, Surjections, and Bijections" (PDF). math.umaine.edu. Retrieved 2019-12-06.
  7. ^ T. M. Apostol (1981). Mathematical Analysis. Addison-Wesley. p. 35.
  8. ^ Goldblatt, Robert (2006) [1984]. Topoi, the Categorial Analysis of Logic (Revised ed.). Dover Publications. ISBN 978-0-486-45026-1. Retrieved 2009-11-25.

Further reading

Read other articles:

徳島県立富岡西高等学校 北緯33度55分8.53秒 東経134度39分0.58秒 / 北緯33.9190361度 東経134.6501611度 / 33.9190361; 134.6501611座標: 北緯33度55分8.53秒 東経134度39分0.58秒 / 北緯33.9190361度 東経134.6501611度 / 33.9190361; 134.6501611過去の名称 徳島県尋常中学校第二分校徳島県富岡中学校徳島県立富岡中学校徳島県富岡第一高等学校徳島県富岡西高等学校国公私

 

2001 studio album by Secret Chiefs 3Book MStudio album by Secret Chiefs 3Released11 September 2001 (2001-09-11)Recorded2001 (2001)Studio Various Coast Recorders (San Francisco, CA) Feast or Famine (San Francisco, CA) Littlefield Pipe Organ Chamber (San Diego, CA) Mills College (Oakland, CA) Rohypnol Studios (London, UK) Found Sound (San Francisco, CA) GenreExperimental rockLength54:58LabelWeb of MimicryProducerTrey SpruanceSecret Chiefs 3 chronology Eyes of Flesh, ...

 

Existen dudas o desacuerdos sobre la exactitud de la información en este artículo o sección. Consulta el debate al respecto en la página de discusión.Uso de esta plantilla: {{Discutido|t={{sust:CURRENTTIMESTAMP}}}} o {{sust:Discutido}} Mapa indicando la corriente Ecuatorial del Norte en el Atlántico, Pacífico, pero variable en el Índico debido al monzón. La corriente Ecuatorial del Norte o corriente Norecuatorial es una significativa corriente marina cálida de los océanos Pacífico...

 

The Electric BoyEpisode Cosmos: A Spacetime OdysseyNomor episodeEpisode 10SutradaraBrannon BragaPenulisAnn DruyanSteven SoterNaratorNeil deGrasse TysonProduserLivia HanichSteven HoltzmanMusikAlan SilvestriPenyuntingJohn DuffyMichael O'HalloranEric LeaTanggal siar11 Mei 2014 (2014-05-11)Durasi42 menitBintang tamu Kronologi episode ← SebelumnyaThe Lost Worlds of Planet Earth Selanjutnya →The Immortals Daftar episode Cosmos: A Spacetime Odyssey The Electric Boy adalah episode ...

 

Questa voce sugli argomenti Nazionali di football americano e sport negli Stati Uniti d'America è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Stati Uniti d'America Campione del mondo in carica Uniformi di gara Divisa casalinga Sport Football americano Federazione USA Football/USFAF Confederazione IFAF Americas Soprannome Team USA Head coach John Mackovic Top scorer Craig Coffin (28) Sito www.usafootball.com Esordio internazionale Francia 0 - 28 Stati...

 

الحديقة أو الحدائق اليابانية (باليابانية: 日本庭園) هي البساتين التي يتم العناية بها في اليابان حسب الطرق التقليدية، وتقوم هذه الطرق على فن خاص يعود تاريخه إلى العهود القديمة. يمكن العثور على هذه الحدائق في بعض البيوت التقليدية اليابانية، في الحدائق العمومية، في المعابد البو

 

Сен-Донан, Сен-Дона́н (фр. Saint-Donan) — муніципалітет у Франції, у регіоні Бретань, департамент Кот-д'Армор. Замок Ейлен-Донан (шотл. гел. Eilean Donan, у перекладі «Острів Донана») — замок, розташований на скелястому острові, що у фіорді Лох-Дуйх у Шотландії. Ейлін Донан (англ. Eilean Donan, ш

 

Дебьоський район рос. Дебёсский районудм. Дэбес ёрос Герб Дебьоського району Прапор Дебьоського району Основні дані Суб'єкт Російської Федерації: Удмуртія Утворений: 15 липня 1929 року Населення (2019[1]): 11842 особи Площа: 1033,03 км² Густота населення: 11,46 осіб/км² Населе�...

 

Secucinumab, com o nome comercial Cosentyx, é um anticorpo monoclonal humano produzido pela Novartis para o tratamento da psoríase. Este fármaco foi também aprovado para o tratamento da artrite psoriática e da espondilite anquilosante. O secucinumab atua por inibição seletiva da interleucina 17-A (IL-17A), uma citocina pró-inflamatória.[1] Como consequência, o tratamento com secuquinumab reduz o eritema, o endurecimento e a descamação presentes na psoríase em placas. Referê...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Music history of the United States – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) This article is part of a series on theMusic of the United StatesChicago, a 1975 American musical with music by...

 

Jos Wagner (Antwerpen, 2 december 1914 - Aartselaar, 8 januari 2007) was een Belgisch voetballer. Hij was een rasechte Antwerpenaar,in zijn jeugd straatvoetbal spelend,eerst aan de Ossemarkt, daarna op het Kiel. Hij speelde eerst een tijd in de lagere reeksen, onder andere bij Nielse FC. In 1937, echter, was FC Antwerp verscheurd door de rebellen, omwille van onverenigbare meningsverschillen tussen bestuur en bepaalde spelers dewelke vertrokken naar een andere liga. Wagner werd gespot en aang...

 

American public high school This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) Sequoyah High SchoolLocation3128 Hwy 411, Madisonville,...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Gempa bumi Illinois 1968 – berita · surat kabar · buku · cendekiawan · JSTOR Gempa Bumi Illinois 1968Waktu UTC??ISCUSGS-ANSSTanggal *9 November 1968 (1968-11-09)Tanggal setempatWaktu&...

 

American politician (1792–1877) For the American real estate developer, see Charles Dayan (real estate developer). Charles DayanDistrict attorney (Lewis Co.)In office1840–1845New York State Assembly (Lewis Co.)In office1835–1836Member of the U.S. House of Representativesfrom New York's 20th districtIn officeMarch 4, 1831 – March 3, 1833Preceded byJonah SanfordJoseph HawkinsSucceeded byNoadiah JohnsonActing Lieutenant Governor of New YorkIn officeOctober 17, 1828&#...

 

American politician Thomas M. PaschalMember of the U.S. House of Representativesfrom Texas's 12th districtIn officeMarch 4, 1893 – March 3, 1895Preceded byDistrict createdSucceeded byGeorge H. Noonan Personal detailsBornThomas Moore Paschal(1845-12-15)December 15, 1845Alexandria, Louisiana, U.S.DiedJanuary 28, 1919(1919-01-28) (aged 73)New York City, U.S.Resting placeMission Burial Park, San Antonio, Texas, U.S.Political partyDemocraticAlma materSt. Mary's CollegeC...

 

Comune in Piedmont, ItalyCortazzoneComuneComune di Cortazzone Coat of armsLocation of Cortazzone CortazzoneLocation of Cortazzone in ItalyShow map of ItalyCortazzoneCortazzone (Piedmont)Show map of PiedmontCoordinates: 44°59′N 8°4′E / 44.983°N 8.067°E / 44.983; 8.067CountryItalyRegionPiedmontProvinceAsti (AT)FrazioniBriccarello, Mongiglietto, Valmezzana, VanaraGovernment • MayorFrancesco ChiaraArea[1] • Total10.4 km2 (4....

 

Light novel based on Neon Genesis Evangelion Neon Genesis Evangelion: AnimaCover of the first English novel volumeエヴァンゲリオン ANIMA(Evangerion ANIMA)Created byKhara Light novelWritten byTakuma Kageyama (2008)Ikuto Yamashita (2009–13)Illustrated byIkuto YamashitaPublished byKadokawa ShotenEnglish publisherNA: Seven Seas EntertainmentMagazineDengeki HobbyDemographicMaleOriginal runJanuary 2008 – January 2013Volumes5 (List of volumes) Neon Genesis Evangelion:...

 

2010 British filmDance StarShe Is The One...Directed bySteven M. SmithWritten bySteven M. SmithProduced bySteven M. SmithKeeley ScottStarringBruce PayneVivien CreegorJon-Paul GatesMegan LittleCinematographyKirk GaydonEdited byBarry LuptonMusic byBarry A. E. CovellDistributed byGreenway Entertainment Amazon rentalRelease date 7 March 2010 (2010-03-07) Running time91CountryUnited KingdomLanguageEnglish Dance Star is a 2010 British dance musical film set in Essex, UK. It was writt...

 

Katedral KalocsaKatedral Metropolitan Santa Perawan Maria Diangkat ke Surgabahasa Hungaria: Nagyboldogasszony FőszékesegyházKatedral KalocsaLokasiKalocsaNegara HungariaDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupan AgungKeuskupan Agung Kalocsa-Kecskemét Katedral Bunda Maria Diangkat ke Surga [1] (bahasa Hungaria: Nagyboldogasszony Főszékesegyház) disebut juga Katedral Kalocsa[2] adalah sebuah gereja katedral...

 

2002 single by SweetboxHere On My Own(Lighter Shade Of Blue)Single by Sweetboxfrom the album Jade B-sideOne Kiss (Acoustic Version)Released2002GenrePopLength3:35 (European version/Single version)3:49 (Japanese album version)LabelWarner Music GroupSongwriter(s)Geoman, VillalonProducer(s)GeomanSweetbox singles chronology Read My Mind (2002) Here On My Own(Lighter Shade Of Blue) (2002) Life Is Cool (2004) Here on My Own (Lighter Shade Of Blue) is the second single by Sweetbox from the album Jade...