Real-valued function

Mass measured in grams is a function from this collection of weight to positive real numbers. The term "weight function", an allusion to this example, is used in pure and applied mathematics.

In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.

Real-valued functions of a real variable (commonly called real functions) and real-valued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of real-valued functions.

Algebraic structure

Let be the set of all functions from a set X to real numbers . Because is a field, may be turned into a vector space and a commutative algebra over the reals with the following operations:

  • vector addition
  • additive identity
  • scalar multiplication
  • pointwise multiplication

These operations extend to partial functions from X to with the restriction that the partial functions f + g and f g are defined only if the domains of f and g have a nonempty intersection; in this case, their domain is the intersection of the domains of f and g.

Also, since is an ordered set, there is a partial order

on which makes a partially ordered ring.

Measurable

The σ-algebra of Borel sets is an important structure on real numbers. If X has its σ-algebra and a function f is such that the preimage f−1(B) of any Borel set B belongs to that σ-algebra, then f is said to be measurable. Measurable functions also form a vector space and an algebra as explained above in § Algebraic structure.

Moreover, a set (family) of real-valued functions on X can actually define a σ-algebra on X generated by all preimages of all Borel sets (or of intervals only, it is not important). This is the way how σ-algebras arise in (Kolmogorov's) probability theory, where real-valued functions on the sample space Ω are real-valued random variables.

Continuous

Real numbers form a topological space and a complete metric space. Continuous real-valued functions (which implies that X is a topological space) are important in theories of topological spaces and of metric spaces. The extreme value theorem states that for any real continuous function on a compact space its global maximum and minimum exist.

The concept of metric space itself is defined with a real-valued function of two variables, the metric, which is continuous. The space of continuous functions on a compact Hausdorff space has a particular importance. Convergent sequences also can be considered as real-valued continuous functions on a special topological space.

Continuous functions also form a vector space and an algebra as explained above in § Algebraic structure, and are a subclass of measurable functions because any topological space has the σ-algebra generated by open (or closed) sets.

Smooth

Real numbers are used as the codomain to define smooth functions. A domain of a real smooth function can be the real coordinate space (which yields a real multivariable function), a topological vector space,[1] an open subset of them, or a smooth manifold.

Spaces of smooth functions also are vector spaces and algebras as explained above in § Algebraic structure and are subspaces of the space of continuous functions.

Appearances in measure theory

A measure on a set is a non-negative real-valued functional on a σ-algebra of subsets.[2] Lp spaces on sets with a measure are defined from aforementioned real-valued measurable functions, although they are actually quotient spaces. More precisely, whereas a function satisfying an appropriate summability condition defines an element of Lp space, in the opposite direction for any f ∈ Lp(X) and xX which is not an atom, the value f(x) is undefined. Though, real-valued Lp spaces still have some of the structure described above in § Algebraic structure. Each of Lp spaces is a vector space and have a partial order, and there exists a pointwise multiplication of "functions" which changes p, namely

For example, pointwise product of two L2 functions belongs to L1.

Other appearances

Other contexts where real-valued functions and their special properties are used include monotonic functions (on ordered sets), convex functions (on vector and affine spaces), harmonic and subharmonic functions (on Riemannian manifolds), analytic functions (usually of one or more real variables), algebraic functions (on real algebraic varieties), and polynomials (of one or more real variables).

See also

Footnotes

  1. ^ Different definitions of derivative exist in general, but for finite dimensions they result in equivalent definitions of classes of smooth functions.
  2. ^ Actually, a measure may have values in [0, +∞]: see extended real number line.

References

  • Apostol, Tom M. (1974). Mathematical Analysis (2nd ed.). Addison–Wesley. ISBN 978-0-201-00288-1.
  • Gerald Folland, Real Analysis: Modern Techniques and Their Applications, Second Edition, John Wiley & Sons, Inc., 1999, ISBN 0-471-31716-0.
  • Rudin, Walter (1976). Principles of Mathematical Analysis (3rd ed.). New York: McGraw-Hill. ISBN 978-0-07-054235-8.

Weisstein, Eric W. "Real Function". MathWorld.

Read other articles:

  لمعانٍ أخرى، طالع قائمة مجلدات المحقق كونان (توضيح). الفصل الـ 1000 من سلسلة فصول المحقق كونان. إصدارات مانغا المحقق كونان عادة ما تكون من كتابة وتأليف غوشو أوياما، أول إصدار من هذه المانغا كان في 18 يونيو 1994 ،[1][2][3][4] واستمر الإصدار حيث وصل عدد الفصول إلى...

 

 

اضغط هنا للاطلاع على كيفية قراءة التصنيف الفطر الثنائي البويغ ثنائي البويغ الليموني المرتبة التصنيفية جنس  التصنيف العلمي النطاق: حقيقيات النوى المملكة: فطريات الفرقة العليا: ديكاريا الشعبة: فطريات زقية الشعيبة: فنجانيانية الطائفة: ليوشياوات الطويئفة: ليوشيانيات الرت...

 

 

Selección de voleibol de Eslovaquia Datos generalesPaís EslovaquiaFederación SVFConfederación CEVRanking FIVB Liga MundialParticipaciones 3 (primera vez en 2014)Mejor resultado 21..eɽ puesto en 2016 Campeonato EuropeoParticipaciones 8 (primera vez en 1997)Mejor resultado 5º puesto en 2011[editar datos en Wikidata] La Selección de voleibol de Eslovaquia es el equipo masculino de voleibol representativo de Eslovaquia en las competiciones internacionales organizadas por la Confe...

British musical duo This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: DJ Luck & MC Neat – news · newspapers · books · scholar · JSTOR (May 2011) DJ Luck & MC NeatOriginLondon, EnglandGenres2-step garageYears activeMC Neat 1999-present. DJ Luck- 1999-presentMembersJoel SamuelsMichael Rose DJ L...

 

 

For the album by Amberian Dawn, see Innuendo (Amberian Dawn album). For other uses, see Innuendo. 1991 studio album by QueenInnuendoStudio album by QueenReleased4 February 1991RecordedMarch 1989 – November 1990Studio Metropolis (London) Mountain (Montreux)[1] GenreHard rock[2]Length 53:48 (original CD) 48:13 (original LP) Label Parlophone Hollywood Producer Queen David Richards Queen chronology At the Beeb(1989) Innuendo(1991) CD Single Box(1991) Singles from Innuend...

 

 

German actor Friedrich KühneBornFranz Michna(1870-04-24)24 April 1870Slavonín, Moravia, (now Czech Republic)Died13 October 1959(1959-10-13) (aged 89)Berlin, GermanyOccupationActorYears active1913–1957 Friedrich Kühne (24 April 1870 – 13 October 1959), born Franz Michna, was a German film actor of the silent era.[1] He appeared in more than 100 films between 1913 and 1957. Selected filmography The Iron Cross (1914) Detektiv Braun (1914) Der Hund von Baskerville (Th...

Campaña de Anbar Parte de la Guerra civil iraquí y la Intervención liderada por Estados Unidos en Irak (2014-presente)Parte de guerra civil iraquí Ubicación de la Gobernación de Ambar en IrakFecha 13 de julio de 2015 - 30 de junio de 2016Lugar Gobernación de Ambar, Irak IrakCoordenadas 33°25′00″N 43°18′00″E / 33.4167, 43.3Resultado Gran victoria del gobierno iraquíConsecuencias Ramadi, Hīt, Ar-Rutbah, y Fallujah de ISIL.El 20 por ciento de la provincia ...

 

 

Setyadjit SoegondoWakil Perdana Menteri Indonesia ke-1Masa jabatan3 Juli 1947 – 29 Januari 1948PresidenSoekarnoPerdana MenteriAmir SjarifoeddinPendahuluTidak ada; jabatan baruPenggantiSyafruddin Prawiranegara Informasi pribadiLahir(1907-06-07)7 Juni 1907 Sengon Hindia BelandaMeninggal20 Desember 1948(1948-12-20) (umur 41)Madiun, IndonesiaKebangsaanIndonesiaSunting kotak info • L • B Raden Mas Setyadjit Soegondo (7 Juni 1907 – 20 Desember 1948)...

 

 

Diplomatic mission Permanent Mission of Armenia to NATOLocationBrussels, Belgium[1]AddressNATO headquarters, VA Building, Bvd Leopold III, 1110AmbassadorArman Israelyan[2]Websitenato.mfa.am/en The Permanent Mission of Armenia to NATO (Armenian: ՆԱՏՕ-ում Հայաստանի Հանրապետության առաքելություն, romanized: NATO-um Hayastani Hanrapetut’yan arrak’elut’yun) is the diplomatic mission of Armenia to the North Atlantic Treaty Organiz...

Turkish footballer (born 1972) Arif Erdem Erdem in 2013Personal informationFull name Arif ErdemDate of birth (1972-01-02) 2 January 1972 (age 51)Place of birth Istanbul, TurkeyHeight 1.80 m (5 ft 11 in)Position(s) ForwardYouth career1986–19?? Yeşilılgazspor19??–1991 ZeytinburnusporSenior career*Years Team Apps (Gls)1991–2000 Galatasaray 244 (64)2000 Real Sociedad 2 (1)2000–2005 Galatasaray 103 (41)Total 349 (106)International career1991–1993 Turkey U21 10 (1)19...

 

 

American politician Diane Douglas21st Arizona Superintendent of Public InstructionIn officeJanuary 5, 2015 – January 7, 2019GovernorDoug DuceyPreceded byJohn HuppenthalSucceeded byKathy Hoffman Personal detailsBornPlainfield, New Jersey, U.S.Political partyRepublicanEducationRaritan Valley Community CollegeRutgers University, New Brunswick (BA) Diane Douglas is an American politician who served as Arizona Superintendent of Public Instruction from 2015 to 2019. She was elected on No...

 

 

Former championship created and promoted by the American professional wrestling promotion WWE WWE Hardcore ChampionshipThe WWF/WWE Hardcore Championship (circa 2002)DetailsPromotionWWEDate establishedNovember 2, 1998Date retiredAugust 26, 2002Other name(s) WWF Hardcore Championship (1998–2002) WWE Hardcore Championship (2002) StatisticsFirst champion(s)MankindFinal champion(s)Rob Van DamMost reignsRaven (26 reigns)Longest reignBig Boss Man (97 days)Shortest reignTerri Runnels (8 seconds)Old...

Five re-established states of former East Germany Eastern Germany redirects here. For the country that existed from 1949 until 1990, see East Germany. For the territories lost by Germany after World War II, see Former eastern territories of Germany. Mecklenburg-Western Pomerania Saxony-Anhalt Saxony Brandenburg Berlin Thuringia Part of a series on the History of Germany Topics Chronology Historiography Military history Economic history Healthcare LGBT history Jewish history Women's history Te...

 

 

Athirathram redirects here. For the Malayalam film, see Athirathram (film). Part of a series onHinduism Hindus History Timeline Origins History Indus Valley Civilisation Historical Vedic religion Dravidian folk religion Śramaṇa Tribal religions in India Traditions Major traditions Shaivism Shaktism Smartism Vaishnavism List Deities Trimurti Brahma Vishnu Shiva Tridevi Saraswati Lakshmi Parvati Other major Devas / Devis Vedic: Agni Ashvins Chandra Indra Prajapati Pushan Rudra Surya...

 

 

Thai-Australian actor and TV personality Matthew Deaneแมทธิว พอล ดีนDeane in 2012BornMatthew Paul Deane (1978-08-29) August 29, 1978 (age 45)Cairns, AustraliaAlma materRangsit UniversityOccupationsCelebrityModelSingerTV hostYouTuberYears active1996 - presentSpouseLydia Sarunrat Deane (2015 - present)Children3 Matthew Paul Deane[1] (Thai: แมทธิว พอล ดีน; born 29 August 1978) is a Thai-Australian singer, model, actor and tel...

2020 non-fiction book by Charles J. Hanley Ghost Flames: Life and Death in a Hidden War, Korea 1950–1953 AuthorCharles J. HanleyCountryUnited StatesLanguageEnglishSubjectKorean WarGenreNarrative historyPublisherPublicAffairsPublication dateAugust 25, 2020Pages504ISBN978-1-5417-6817-8 Ghost Flames: Life and Death in a Hidden War, Korea 1950-1953 is a non-fiction narrative history of the Korean War written by Charles J. Hanley and published in August 2020 by PublicAffairs, an imprint of Perse...

 

 

Jesuit missionary and lexicographer in Vietnam Alexandre de RhodesPersonal detailsBorn15 March 1593Avignon, Papal StatesDied5 November 1660 (aged 67)Isfahan, PersiaDenominationRoman Catholicism Alexandre de Rhodes (15 March 1593[1] – 5 November 1660) was an Avignonese Jesuit missionary and lexicographer who had a lasting impact on Christianity in Vietnam. He wrote the Dictionarium Annamiticum Lusitanum et Latinum, the first trilingual Vietnamese-Portuguese-Latin dictionary, publishe...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cultural depictions of John, King of England – news · newspapers · books · scholar · JSTOR (February 2019) (Learn how and when to remove this template message) King John as shown in Cassell's History of England (1902) John of England has been portrayed many tim...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Dusun Bungo – berita · surat kabar · buku · cendekiawan · JSTOR Untuk kegunaan lainnya, lihat Dusun (disambiguasi). Artikel ini adalah bagian dari seriPembagian administratifIndonesia Tingkat I Provinsi ...

 

 

La Feria de Chapultepec Ubicación Ciudad de MéxicoCoordenadas 19°24′56″N 99°11′45″O / 19.415611111111, -99.195777777778Dirección Juegos Mecánicos S/N, Cto. Bosques de Chapultepec, II Sección, Miguel Hidalgo, 11580 Ciudad de MéxicoPropietario Gobierno de la Ciudad de MéxicoApertura 24 de octubre de 1964Clausura 13 de octubre de 2019 13 de octubre de 2019 (54 años)Nombres anteriores Juegos Mecánicos de Chapultepec, La Feria Chapultepec MágicoAtracciones ...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!