Algebraic topology

A torus, one of the most frequently studied objects in algebraic topology

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.

Main branches

Below are some of the main areas studied in algebraic topology:

Homotopy groups

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

Homology

In algebraic topology and abstract algebra, homology (in part from Greek ὁμός homos "identical") is a certain general procedure to associate a sequence of abelian groups or modules with a given mathematical object such as a topological space or a group.[1]

Cohomology

In homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups defined from a cochain complex. That is, cohomology is defined as the abstract study of cochains, cocycles, and coboundaries. Cohomology can be viewed as a method of assigning algebraic invariants to a topological space that has a more refined algebraic structure than does homology. Cohomology arises from the algebraic dualization of the construction of homology. In less abstract language, cochains in the fundamental sense should assign "quantities" to the chains of homology theory.

Manifolds

A manifold is a topological space that near each point resembles Euclidean space. Examples include the plane, the sphere, and the torus, which can all be realized in three dimensions, but also the Klein bottle and real projective plane which cannot be embedded in three dimensions, but can be embedded in four dimensions. Typically, results in algebraic topology focus on global, non-differentiable aspects of manifolds; for example Poincaré duality.

Knot theory

Knot theory is the study of mathematical knots. While inspired by knots that appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined so that it cannot be undone. In precise mathematical language, a knot is an embedding of a circle in three-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.

Complexes

A simplicial 3-complex.

A simplicial complex is a topological space of a certain kind, constructed by "gluing together" points, line segments, triangles, and their n-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex.

A CW complex is a type of topological space introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex).

Method of algebraic invariants

An older name for the subject was combinatorial topology, implying an emphasis on how a space X was constructed from simpler ones[2] (the modern standard tool for such construction is the CW complex). In the 1920s and 1930s, there was growing emphasis on investigating topological spaces by finding correspondences from them to algebraic groups, which led to the change of name to algebraic topology.[3] The combinatorial topology name is still sometimes used to emphasize an algorithmic approach based on decomposition of spaces.[4]

In the algebraic approach, one finds a correspondence between spaces and groups that respects the relation of homeomorphism (or more general homotopy) of spaces. This allows one to recast statements about topological spaces into statements about groups, which have a great deal of manageable structure, often making these statements easier to prove. Two major ways in which this can be done are through fundamental groups, or more generally homotopy theory, and through homology and cohomology groups. The fundamental groups give us basic information about the structure of a topological space, but they are often nonabelian and can be difficult to work with. The fundamental group of a (finite) simplicial complex does have a finite presentation.

Homology and cohomology groups, on the other hand, are abelian and in many important cases finitely generated. Finitely generated abelian groups are completely classified and are particularly easy to work with.

Setting in category theory

In general, all constructions of algebraic topology are functorial; the notions of category, functor and natural transformation originated here. Fundamental groups and homology and cohomology groups are not only invariants of the underlying topological space, in the sense that two topological spaces which are homeomorphic have the same associated groups, but their associated morphisms also correspond—a continuous mapping of spaces induces a group homomorphism on the associated groups, and these homomorphisms can be used to show non-existence (or, much more deeply, existence) of mappings.

One of the first mathematicians to work with different types of cohomology was Georges de Rham. One can use the differential structure of smooth manifolds via de Rham cohomology, or Čech or sheaf cohomology to investigate the solvability of differential equations defined on the manifold in question. De Rham showed that all of these approaches were interrelated and that, for a closed, oriented manifold, the Betti numbers derived through simplicial homology were the same Betti numbers as those derived through de Rham cohomology. This was extended in the 1950s, when Samuel Eilenberg and Norman Steenrod generalized this approach. They defined homology and cohomology as functors equipped with natural transformations subject to certain axioms (e.g., a weak equivalence of spaces passes to an isomorphism of homology groups), verified that all existing (co)homology theories satisfied these axioms, and then proved that such an axiomatization uniquely characterized the theory.

Applications

Classic applications of algebraic topology include:

Notable people

Important theorems

See also

Notes

  1. ^ Fraleigh (1976, p. 163)
  2. ^ Fréchet, Maurice; Fan, Ky (2012), Invitation to Combinatorial Topology, Courier Dover Publications, p. 101, ISBN 9780486147888.
  3. ^ Henle, Michael (1994), A Combinatorial Introduction to Topology, Courier Dover Publications, p. 221, ISBN 9780486679662.
  4. ^ Spreer, Jonathan (2011), Blowups, slicings and permutation groups in combinatorial topology, Logos Verlag Berlin GmbH, p. 23, ISBN 9783832529833.

References

Further reading

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2021) شيفروليه كابريسمعلومات عامةالنوع سيارة عائلية كبيرة العلامة التجارية شيفروليه المصنع جنرال موتورز البلد ا

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)   لمعانٍ أخرى، طالع محمد ناصر (توضيح). محمد ناصر احمد علي الحسني وزير الدفاع الجمهورية اليمنية في ...

 

Koreanische Amerikaner (engl. Korean Americans) sind Bürger der Vereinigten Staaten von koreanischer Abstammung. Inhaltsverzeichnis 1 Demografie 2 Bekannte koreanische Amerikaner 3 Siehe auch 4 Weblinks 5 Einzelnachweise Demografie Nach Angaben des United States Census 2010 lebten 1,4 Millionen Koreanische Amerikaner in den Vereinigten Staaten.[1] Die Hauptsiedlungsgebiete der Koreanischen Amerikaner sind Greater Los Angeles Area (334.329) und die New York Metropolitan Area (218.764)...

Формальні науки — сукупність наук, які займаються дослідженням формальних систем. До формальних наук, наприклад, належать: логіка, математика, теоретична інформатика, теорія інформації, теорія систем, теорія рішень, статистика, деякі аспекти мовознавства. Формальні нау...

 

Friedrich Wilhelm von Reden F. W. Reden w mundurze Data i miejsce urodzenia 23 marca 1752 Hameln Data i miejsce śmierci 3 lipca 1815 Bukowiec Zawód, zajęcie minister Multimedia w Wikimedia Commons Friedrich Wilhelm von Reden Kaplica grobowa Friedricha Wilhelma von Redena, tzw. „Ruiny Opactwa”, na zboczach Mrowca w Rudawach Janowickich. Friedrich Wilhelm von Reden (ur. 23 marca 1752 w Hameln, zm. 3 lipca 1815 w Bukowcu) – niemiecki dyrektor Wyższego Urzędu Górniczego we W...

 

2006 Canadian filmMonkey WarfareFilm posterDirected byReginald HarkemaWritten byReginald HarkemaProduced byLeonard FarlingerJennifer JonasKris KingStarringDon McKellarTracy WrightNadia LitzCinematographyJonathon CliffEdited byKathy WinkaufMusic byDJ Hans LucasRelease dates September 10, 2006 (2006-09-10) (TIFF) November 15, 2006 (2006-11-15) (Canada) Running time75 minutesCountryCanadaLanguageEnglish Monkey Warfare is a 2006 Canadian drama film written an...

Appointed head of Sindh, Pakistan Governor of SindhGovernor of Sindh's SealProvincial Flag of SindhIncumbentKamran Tessorisince 9 October 2022StyleThe Honorable(formal)ResidenceGovernor HouseSeatKarachi, Sindh, PakistanNominatorPrime Minister of PakistanAppointerPresident of PakistanTerm length5 yearsConstituting instrumentConstitution of PakistanFormation15 August 1947; 76 years ago (1947-08-15)First holderSir Charles NapierSalary10000$Websitewww.governorsindh.gov.pk T...

 

Human settlement in EnglandEast MerseaSt Edmund's church, East MerseaEast MerseaLocation within EssexPopulation266 (2011 Census)[1]OS grid referenceTM060150DistrictCity of ColchesterShire countyEssexRegionEastCountryEnglandSovereign stateUnited KingdomPost townColchesterPostcode districtCO5Dialling code01206PoliceEssexFireEssexAmbulanceEast of England UK ParliamentHarwich and North Essex List of places UK England Essex 51°47′45″N 0°59′09...

 

Batang melenting getar adalah contoh sistem dasar dalam fisika dengan tenaga potensial lenting yang diubah menjadi teng kinetik dan sebaliknya. Dalam fisika, elastisitas atau kelentingan (dari Yunani ἐλαστός ductible) adalah kecenderungan bahan padat untuk kembali ke bentuk aslinya setelah terdeformasi. Benda padat akan mengalami deformasi ketika gaya diterapkan padanya. Jika bahan tersebut elastis, benda tersebut akan kembali ke bentuk dan ukuran awalnya ketika gaya dihilangkan. Alas...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Singles, Volume III: 1964–1965 – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) 2007 compilation album by James BrownThe Singles, Volume III: 1964–1965Compilation album by James BrownReleasedJune 8...

 

U.S. brand of hot sauce Cholula Hot SauceProduct typeHot sauceOwnerMcCormick & CompanyCountryMexicoWebsiteCholula.com[1] Cholula Hot Sauce is a brand of chili-based hot sauce, based in Stamford, Connecticut, manufactured in Chapala, Jalisco, Mexico by SANE, and licensed by McCormick. According to its manufacturers, Cholula hot sauce rates 1,000–2,000 on the Scoville scale[2] though other sources measure it as being over three times as hot, at 3,600 Scoville units.[3&...

 

  关于与「李佳芯」標題相近或相同的条目,請見「李佳芯 (消歧義)」。 本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目應避免有陳列雜項、瑣碎資料的部分。 (2022年6月22日)請協助將有關資料重新編排成連貫性的文章,安置於適當章節或條目內。 此條目的引用需要进行清理,使其符合格式。 (2023年5月8日)参考文献应符合正确的引用、...

Hospital in Songkhla, ThailandHatyai Hospital โรงพยาบาลหาดใหญ่Ministry of Public Health Health District 12The Accident and Emergency BuildingGeographyLocation182 Ratthakan Road, Hat Yai District, Songkhla, ThailandCoordinates7°01′00″N 100°28′05″E / 7.01667°N 100.46806°E / 7.01667; 100.46806OrganisationTypeRegionalAffiliated universityFaculty of Medicine, Prince of Songkla UniversityServicesStandardsHospital Accreditation (Ins...

 

Bukan Sekedar WayangGenreKomediPresenterSuleCepotNegara asalIndonesiaBahasa asliIndonesiaBahasa SundaJmlh. episode577ProduksiProduserBima Indra Sakti Melanie Yoana SihombingDurasi30 menitRumah produksiNET. EntertainmentDistributorNet Mediatama TelevisiIndika Entertainment GroupRilis asliJaringanNET.Format audioDolby Digital 5.1Rilis23 Juni 2014 (2014-06-23) –31 Juli 2016 (2016-7-31)Acara terkaitCanda Wayang (MNCTV)Asep Show (MNCTV)Wayang Kulit (Indosiar)Cepot Show (MNCTV) Buk...

 

Multiplex cinema hall in Mumbai, India Sterling CineplexSterling Cinema, Sterling TheatreAddress65, Cinema Lane, Marzaban Road, FortMumbaiIndiaCoordinates18°56′17″N 72°49′59″E / 18.938°N 72.833°E / 18.938; 72.833TypeMultiplexConstructionOpened1969Reopened2007Years active1969–presentWebsitehttp://www.sterlingcineplex.in/ Sterling Cineplex (previously known as Sterling Cinema) is a multiplex cinema hall in Mumbai. Opened (as a multiplex) in 2007, Sterling h...

Cathedral city and county town of Cumbria, England This article is about the city in England. For other uses, see Carlisle (disambiguation). City in EnglandCarlisleCityThe city skyline, cathedral, old town hall, citadel and castleCarlisleLocation within CumbriaPopulation74,281 (2021)OS grid referenceNY395555• London261 mi (420 km) SSEUnitary authorityCumberlandCeremonial countyCumbriaRegionNorth WestCountryEnglandSovereign stateUnited KingdomPost...

 

Bohemian doctor and scientist Jan Marek MarciBorn13 June 1595[1]LanškrounDied10 April 1667 (1667-04-11) (aged 71)[1]PragueNationalityCzechAlma materUniversity of Olomouc, OlomoucCharles University, PragueScientific careerFieldsMedicine, Mechanics, Optics, MathematicsInstitutionsCharles University, Prague Jan Marek Marci FRS (German: Johannes Marcus Marci de Cronland; June 13, 1595–April 10, 1667), or Johannes Marcus Marci, was a Bohemian doctor and scientist,...

 

Arvo Aaltonen Medallista olímpico Datos personalesNacimiento Pori (Finlandia)2 de diciembre de 1892Nacionalidad(es) Rusa y FinlandesaFallecimiento Pori (Finlandia)17 de junio de 1949Carrera deportivaDeporte Natación               Medallero Natación Finlandia Finlandia Juegos Olímpicos BronceAmberes 1920200 m braza BronceAmberes 1920400 m braza [editar datos en Wikidata] Arvo Aaltonen (Pori, 2 de diciembre...

For the Heather Alexander and Alexander James Adams album, see Alexander James Adams. 1996 studio album by Don RossWintertideStudio album by Don RossReleased1996GenreChristmasLabelColumbia/Sony CanadaDon Ross chronology This Dragon Won't Sleep(1995) Wintertide(1996) Loaded, Leather, Moonroof(1997) Wintertide is an album by the Canadian guitarist Don Ross, released in 1996. Reception Professional ratingsReview scoresSourceRatingAllmusic [1] Music critic Roch Parisien, writing f...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. KoprofobiaInformasi umumSpesialisasiPsychology Koprofobia adalah ketakutan atau keengganan untuk buang air besar atau keengganan terhadap feses.[1] Pada manusia, feses dan buang air besar sudah menjadi budaya tabu.[2] Coprophobia atau k...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!