Differential topology

In mathematics, differential topology is the field dealing with the topological properties and smooth properties[a] of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.[1]

The Morse theory of the height function on a torus can describe its homotopy type.

The central goal of the field of differential topology is the classification of all smooth manifolds up to diffeomorphism. Since dimension is an invariant of smooth manifolds up to diffeomorphism type, this classification is often studied by classifying the (connected) manifolds in each dimension separately:

A cobordism (W; M, N), which generalises the notion of a diffeomorphism.

Beginning in dimension 4, the classification becomes much more difficult for two reasons.[5][6] Firstly, every finitely presented group appears as the fundamental group of some 4-manifold, and since the fundamental group is a diffeomorphism invariant, this makes the classification of 4-manifolds at least as difficult as the classification of finitely presented groups. By the word problem for groups, which is equivalent to the halting problem, it is impossible to classify such groups, so a full topological classification is impossible. Secondly, beginning in dimension four it is possible to have smooth manifolds that are homeomorphic, but with distinct, non-diffeomorphic smooth structures. This is true even for the Euclidean space , which admits many exotic structures. This means that the study of differential topology in dimensions 4 and higher must use tools genuinely outside the realm of the regular continuous topology of topological manifolds. One of the central open problems in differential topology is the four-dimensional smooth Poincaré conjecture, which asks if every smooth 4-manifold that is homeomorphic to the 4-sphere, is also diffeomorphic to it. That is, does the 4-sphere admit only one smooth structure? This conjecture is true in dimensions 1, 2, and 3, by the above classification results, but is known to be false in dimension 7 due to the Milnor spheres.

Important tools in studying the differential topology of smooth manifolds include the construction of smooth topological invariants of such manifolds, such as de Rham cohomology or the intersection form, as well as smoothable topological constructions, such as smooth surgery theory or the construction of cobordisms. Morse theory is an important tool which studies smooth manifolds by considering the critical points of differentiable functions on the manifold, demonstrating how the smooth structure of the manifold enters into the set of tools available.[7] Oftentimes more geometric or analytical techniques may be used, by equipping a smooth manifold with a Riemannian metric or by studying a differential equation on it. Care must be taken to ensure that the resulting information is insensitive to this choice of extra structure, and so genuinely reflects only the topological properties of the underlying smooth manifold. For example, the Hodge theorem provides a geometric and analytical interpretation of the de Rham cohomology, and gauge theory was used by Simon Donaldson to prove facts about the intersection form of simply connected 4-manifolds.[8] In some cases techniques from contemporary physics may appear, such as topological quantum field theory, which can be used to compute topological invariants of smooth spaces.

Famous theorems in differential topology include the Whitney embedding theorem, the hairy ball theorem, the Hopf theorem, the Poincaré–Hopf theorem, Donaldson's theorem, and the Poincaré conjecture.

Description

Differential topology considers the properties and structures that require only a smooth structure on a manifold to be defined. Smooth manifolds are 'softer' than manifolds with extra geometric structures, which can act as obstructions to certain types of equivalences and deformations that exist in differential topology. For instance, volume and Riemannian curvature are invariants that can distinguish different geometric structures on the same smooth manifold—that is, one can smoothly "flatten out" certain manifolds, but it might require distorting the space and affecting the curvature or volume.[citation needed]

On the other hand, smooth manifolds are more rigid than the topological manifolds. John Milnor discovered that some spheres have more than one smooth structure—see Exotic sphere and Donaldson's theorem. Michel Kervaire exhibited topological manifolds with no smooth structure at all.[9] Some constructions of smooth manifold theory, such as the existence of tangent bundles,[10] can be done in the topological setting with much more work, and others cannot.

One of the main topics in differential topology is the study of special kinds of smooth mappings between manifolds, namely immersions and submersions, and the intersections of submanifolds via transversality. More generally one is interested in properties and invariants of smooth manifolds that are carried over by diffeomorphisms, another special kind of smooth mapping. Morse theory is another branch of differential topology, in which topological information about a manifold is deduced from changes in the rank of the Jacobian of a function.

For a list of differential topology topics, see the following reference: List of differential geometry topics.

Differential topology versus differential geometry

Differential topology and differential geometry are first characterized by their similarity. They both study primarily the properties of differentiable manifolds, sometimes with a variety of structures imposed on them.

Animation of a coffee cup transforming into a donut shape

One major difference lies in the nature of the problems that each subject tries to address. In one view,[4] differential topology distinguishes itself from differential geometry by studying primarily those problems that are inherently global. Consider the example of a coffee cup and a donut. From the point of view of differential topology, the donut and the coffee cup are the same (in a sense). This is an inherently global view, though, because there is no way for the differential topologist to tell whether the two objects are the same (in this sense) by looking at just a tiny (local) piece of either of them. They must have access to each entire (global) object.

From the point of view of differential geometry, the coffee cup and the donut are different because it is impossible to rotate the coffee cup in such a way that its configuration matches that of the donut. This is also a global way of thinking about the problem. But an important distinction is that the geometer does not need the entire object to decide this. By looking, for instance, at just a tiny piece of the handle, they can decide that the coffee cup is different from the donut because the handle is thinner (or more curved) than any piece of the donut.

To put it succinctly, differential topology studies structures on manifolds that, in a sense, have no interesting local structure. Differential geometry studies structures on manifolds that do have an interesting local (or sometimes even infinitesimal) structure.

More mathematically, for example, the problem of constructing a diffeomorphism between two manifolds of the same dimension is inherently global since locally two such manifolds are always diffeomorphic. Likewise, the problem of computing a quantity on a manifold that is invariant under differentiable mappings is inherently global, since any local invariant will be trivial in the sense that it is already exhibited in the topology of . Moreover, differential topology does not restrict itself necessarily to the study of diffeomorphism. For example, symplectic topology—a subbranch of differential topology—studies global properties of symplectic manifolds. Differential geometry concerns itself with problems—which may be local or global—that always have some non-trivial local properties. Thus differential geometry may study differentiable manifolds equipped with a connection, a metric (which may be Riemannian, pseudo-Riemannian, or Finsler), a special sort of distribution (such as a CR structure), and so on.

This distinction between differential geometry and differential topology is blurred, however, in questions specifically pertaining to local diffeomorphism invariants such as the tangent space at a point. Differential topology also deals with questions like these, which specifically pertain to the properties of differentiable mappings on (for example the tangent bundle, jet bundles, the Whitney extension theorem, and so forth).

The distinction is concise in abstract terms:

  • Differential topology is the study of the (infinitesimal, local, and global) properties of structures on manifolds that have only trivial local moduli.
  • Differential geometry is such a study of structures on manifolds that have one or more non-trivial local moduli.

See also

Notes

  1. ^ Bott, R. and Tu, L.W., 1982. Differential forms in algebraic topology (Vol. 82, pp. xiv+-331). New York: Springer.
  2. ^ Milnor, J. and Weaver, D.W., 1997. Topology from the differentiable viewpoint. Princeton university press.
  3. ^ Lee, J., 2010. Introduction to topological manifolds (Vol. 202). Springer Science & Business Media.
  4. ^ a b Hirsch, Morris (1997). Differential Topology. Springer-Verlag. ISBN 978-0-387-90148-0.
  5. ^ Scorpan, A., 2005. The wild world of 4-manifolds. American Mathematical Soc.
  6. ^ Freed, D.S. and Uhlenbeck, K.K., 2012. Instantons and four-manifolds (Vol. 1). Springer Science & Business Media.
  7. ^ Milnor, J., 2016. Morse Theory.(AM-51), Volume 51. Princeton university press.
  8. ^ Donaldson, S.K., Donaldson, S.K. and Kronheimer, P.B., 1997. The geometry of four-manifolds. Oxford university press.
  9. ^ Kervaire 1960
  10. ^ Lashof 1972
  1. ^ A smooth property of a manifold is any property preserved up to diffeomorphism. This does not include certain geometric properties such as distances between points or volume, which depend on a further choice of Riemannian metric and are only invariant up to isometry.

References

Read other articles:

Species of stick insect Common walkingstick Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Phasmatodea Family: Diapheromeridae Genus: Diapheromera Species: D. femorata Binomial name Diapheromera femorata(Say, 1824) Diapheromera femorata The common walkingstick or northern walkingstick (Diapheromera femorata) is a species of phasmid or stick insect found across North America. The average length of this species is 75mm (3 in) for...

 

Para otros usos de este término, véase Roosevelt.Parque Nacional de los Derechos de los Niños y Niñas - Franklin Delano Roosevelt Monumento Histórico Nacional SituaciónPaís UruguayUbicación Avenida de las AméricasDepartamento CanelonesCiudad Ciudad de la CostaEcorregión San José de CarrascoCoordenadas 34°51′29″S 56°01′18″O / -34.85816667, -56.02171389Datos generalesAdministración Gobierno de CanelonesGrado de protección Monumento Histórico Nac...

 

كبير المحققين Inquisitor Generalis كبير المحققين البلد إسبانيا الإمبراطورية الإسبانية  عن المنصب المعين ألملك تأسيس المنصب 1483 آخر حامل للمنصب خيرونيمو كاستيون إي سالاس تعديل مصدري - تعديل   كبير المحققين أو المحقق الأكبر (باللاتينية: Inquisitor Generalis) هو كبير موظفي ديوان التحقيق (محا

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Pulau Saseel – berita · surat kabar · ...

 

Volleyball Championship 2021 Boys' U19 World Championshipوالیبال قهرمانی زیر ۱۹ سال پسران جهانتهران ۲۰۲۱Tournament detailsHost nation IranCityTehranDates24 August – 2 SeptemberTeams20 (from 5 confederations)Venue(s)2 (in 1 host city)Champions Poland (2nd title)Runners-up BulgariaThird place IranFourth place RussiaTournament awardsMVP Tytus NowikBest Setter Stoil PalevBest OH Aleksandar Nikolov Kamil SzymenderaBest MB...

 

For other uses, see Heart Like a Wheel (disambiguation). 1974 studio album by Linda RonstadtHeart Like a WheelStudio album by Linda RonstadtReleasedNovember 19, 1974 (1974-11-19)RecordedJune–September 1974StudioThe Sound Factory and Clover Recorders, Los Angeles, Track Recorders, Maryland, Record Plant and The Hit Factory, New York City, Trident Studios and AIR Studios, London[1]Genre Country rock pop rock[2] soft rock[2] Length31:40LabelCapito...

María Pilar Fernández Otero Información personalNacimiento 1937 Bandeira, PontevedraNacionalidad EspañolaEducaciónEducada en Universidad de Santiago de Compostela Información profesionalCargos ocupados Catedrático de universidad (desde 1970) Empleador Universidad de NavarraUniversidad de BarcelonaUniversidad de Santiago de Compostela Miembro de Real Academia Nacional de Farmacia [editar datos en Wikidata] María Pilar Fernández Otero, (Bandeira, Pontevedra, 1937), es ca...

 

Daftar ini belum tentu lengkap. Anda dapat membantu Wikipedia dengan mengembangkannya. Peta Jaringan Nasional Jaringan Nasional (atau Jaringan Truk Nasional ) adalah jaringan jalan raya negara bagian dan antarnegara bagian yang disetujui untuk pengemudi truk komersial di Amerika Serikat . Undang -Undang Bantuan Transportasi Permukaan tahun 1982 mengizinkan pembentukan jaringan jalan raya nasional yang ditujukan untuk digunakan oleh truk- truk besar . Di jalan raya ini, batas lebar dan panjang...

 

Lenguas saharianasDistribución geográfica Sahara, África centralPaíses  Chad  Níger  Nigeria  Sudán  CamerúnFiliación genética Nilo-sahariano   SaharianoSubdivisiones Sahariano orientalSahariano occidental [editar datos en Wikidata] Las lenguas saharianas constituyen una pequeña familia de lenguas habladas a lo largo del Sáhara oriental, extendiéndose del noroeste de Darfur al sur de Libia, además de por el norte y centro de Chad, el e...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2022) إيفيكا كالينيتش معلومات شخصية الميلاد 26 مارس 1956 (67 سنة)  سبليت  مركز اللعب مدافع الجنسية كرواتيا  مسيرة الشباب سنوات فريق NK Solin [الإنجليزية]‏ المسي

 

Nature Reviews Cancer  Disiplin ilmuRiset kankerBahasaInggrisDetail publikasiPenerbitNature Publishing Group (Britania Raya)Sejarah penerbitanOkt. 2001-sekarangFaktor dampak37.4 (2014)PengindeksanISSN1474-175X (print)1474-1768 (web)Pranala Journal homepage Nature Reviews Cancer adalah jurnal tinjauan bulanan yang membahas berbagai hal dalam bidang onkologi. Lihat pula Nature lbsGeorg von Holtzbrinck Publishing GroupHoltzbrinckPenerbit S. Fischer Rowohlt Kiepenheuer & W...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Kapurung – berita · surat kabar · buku · cendekiawan · JSTOR Kapurung di Makassar Kapurung (Bahasa Tae': Pugalu) adalah salah satu makanan khas tradisional di Sulawesi Selatan, khususnya masyarakat daerah Luw...

جزء من سلسلة مقالات حولالإسلام حسب البلد الإسلام في إفريقيا أنغولا بنين بوتسوانا بوركينا فاسو بوروندي الكاميرون الرأس الأخضر أفريقيا الوسطى نشاد الجزائر جزر القمر الكونغو الديمقراطية الكونغو ساحل العاج جيبوتي مصر غينيا الاستوائية إريتريا إثيوبيا الغابون غامبيا غانا غي...

 

One on OneSutradara Kim Ki-duk Produser Kim Ki-duk Kim Soon-mo Ditulis oleh Kim Ki-duk PemeranMa Dong-seok Kim Young-min Lee Yi-kyungSinematograferKim Ki-dukPenyuntingKim Ki-dukPerusahaanproduksiKim Ki-duk FilmTanggal rilis 22 Mei 2014 (2014-05-22) (Korea Selatan) Durasi122 menitNegara Korea Selatan Bahasa Korea One on One (Hangul: 일대일; RR: Il-dae-il) adalah film Korea Selatan tahun 2014 yang disutradarai oleh Kim Ki-duk.[1][2][3] A...

 

Indian politician This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Avinash Rai Khanna – news · newspapers · books · scholar · JSTOR (April 2010) (Learn how and when to remove this template messag...

Временное правительство Амурской области Глава правительства — А. Н. Алексеевский Общая информация Страна Российская республика Российское государство Дата создания 18 сентября 1918 года Предшественник 1) Бюро самоуправлений Амурской области 2) Амурский Совет Народный К...

 

WildWorksThe current logoFormerlySmart Bomb InteractiveTypePrivateIndustryGame developerFounded2003FounderKris Johnson Clark Stacey Jeff AmisHeadquartersSalt Lake City, Utah, USProductsAnimal Jam ClassicSnoopy Flying AceWebsitewildworks.com WildWorks (formerly Smart Bomb Interactive) is an American game development studio based in Salt Lake City, Utah. The studio was assembled from game industry veterans, co-founded by Kris Johnson, Clark Stacey, and Jeff Amis. The studio has developed titles...

 

2018 Filipino filmMLDirected byBenedict Mique Jr.[1]Written byBenedict Mique Jr.Produced byRoselle Lorenzo, Benedict Mique Jr.Starring Eddie Garcia[2] Tony Labrusca[3] CinematographyAnne MonzonEdited byMikael PestanoMusic byPearlsha Abubakar-QuebralDistributed bySolar PicturesRelease date August 3, 2018 (2018-08-03) (Cinemalaya) Running time90 minutes[4]CountryPhilippinesLanguageFilipino ML is a 2018 Philippine independent psychological horro...

Академия просвещения университета им. Витаутаса ВеликогоVytauto Didžiojo universiteto Švietimo akademija Международное название Vytautas Magnus University Education Academy Год основания 1935 Ректор Альгирдас Гайжутис Студенты 12 500 Расположение  Литва Юридический адрес Studentų g. 39 Vilnius Сайт svietimas.vdu.lt  Медиа...

 

American neuroscientist, psychologist, economist This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains wording that promotes the subject in a subjective manner without imparting real information. Please remove or replace such wording and instead of making proclamations about a subject's importance, use facts and attribution to demonstrate that importance. (August 2023) (Le...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!