D'Agostino's K-squared test

In statistics, D'Agostino's K2 test, named for Ralph D'Agostino, is a goodness-of-fit measure of departure from normality, that is the test aims to gauge the compatibility of given data with the null hypothesis that the data is a realization of independent, identically distributed Gaussian random variables. The test is based on transformations of the sample kurtosis and skewness, and has power only against the alternatives that the distribution is skewed and/or kurtic.

Skewness and kurtosis

In the following, { xi } denotes a sample of n observations, g1 and g2 are the sample skewness and kurtosis, mj’s are the j-th sample central moments, and is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as β1 and β2 respectively. Such notation can be inconvenient since, for example, β1 can be a negative quantity.

The sample skewness and kurtosis are defined as

These quantities consistently estimate the theoretical skewness and kurtosis of the distribution, respectively. Moreover, if the sample indeed comes from a normal population, then the exact finite sample distributions of the skewness and kurtosis can themselves be analysed in terms of their means μ1, variances μ2, skewnesses γ1, and kurtosis γ2. This has been done by Pearson (1931), who derived the following expressions:[better source needed]

and

For example, a sample with size n = 1000 drawn from a normally distributed population can be expected to have a skewness of 0, SD 0.08 and a kurtosis of 0, SD 0.15, where SD indicates the standard deviation.[citation needed]

Transformed sample skewness and kurtosis

The sample skewness g1 and kurtosis g2 are both asymptotically normal. However, the rate of their convergence to the distribution limit is frustratingly slow, especially for g2. For example even with n = 5000 observations the sample kurtosis g2 has both the skewness and the kurtosis of approximately 0.3, which is not negligible. In order to remedy this situation, it has been suggested to transform the quantities g1 and g2 in a way that makes their distribution as close to standard normal as possible.

In particular, D'Agostino & Pearson (1973) suggested the following transformation for sample skewness:

where constants α and δ are computed as

and where μ2 = μ2(g1) is the variance of g1, and γ2 = γ2(g1) is the kurtosis — the expressions given in the previous section.

Similarly, Anscombe & Glynn (1983) suggested a transformation for g2, which works reasonably well for sample sizes of 20 or greater:

where

and μ1 = μ1(g2), μ2 = μ2(g2), γ1 = γ1(g2) are the quantities computed by Pearson.

Omnibus K2 statistic

Statistics Z1 and Z2 can be combined to produce an omnibus test, able to detect deviations from normality due to either skewness or kurtosis (D'Agostino, Belanger & D'Agostino 1990):

If the null hypothesis of normality is true, then K2 is approximately χ2-distributed with 2 degrees of freedom.

Note that the statistics g1, g2 are not independent, only uncorrelated. Therefore, their transforms Z1, Z2 will be dependent also (Shenton & Bowman 1977), rendering the validity of χ2 approximation questionable. Simulations show that under the null hypothesis the K2 test statistic is characterized by

expected value standard deviation 95% quantile
n = 20 1.971 2.339 6.373
n = 50 2.017 2.308 6.339
n = 100 2.026 2.267 6.271
n = 250 2.012 2.174 6.129
n = 500 2.009 2.113 6.063
n = 1000 2.000 2.062 6.038
χ2(2) distribution 2.000 2.000 5.991

See also

References

  • Anscombe, F.J.; Glynn, William J. (1983). "Distribution of the kurtosis statistic b2 for normal statistics". Biometrika. 70 (1): 227–234. doi:10.1093/biomet/70.1.227. JSTOR 2335960.
  • D'Agostino, Ralph B. (1970). "Transformation to normality of the null distribution of g1". Biometrika. 57 (3): 679–681. doi:10.1093/biomet/57.3.679. JSTOR 2334794.
  • D'Agostino, Ralph B.; Pearson, E. S. (1973). "Tests for Departure from Normality. Empirical Results for the Distributions of b2 and √b1". Biometrika. 60 (3): 613–622. JSTOR 2335012.
  • D'Agostino, Ralph B.; Belanger, Albert; D'Agostino, Ralph B. Jr. (1990). "A suggestion for using powerful and informative tests of normality" (PDF). The American Statistician. 44 (4): 316–321. doi:10.2307/2684359. JSTOR 2684359. Archived from the original (PDF) on 2012-03-25.
  • Pearson, Egon S. (1931). "Note on tests for normality". Biometrika. 22 (3/4): 423–424. doi:10.1093/biomet/22.3-4.423. JSTOR 2332104.
  • Shenton, L.R.; Bowman, Kimiko O. (1977). "A bivariate model for the distribution of √b1 and b2". Journal of the American Statistical Association. 72 (357): 206–211. doi:10.1080/01621459.1977.10479940. JSTOR 2286939.

Read other articles:

Yahudi Kaifeng (יהדות מזרח Yahadut Mizrah)Yahudi Kaifeng, akhir abad ke-19 atau awal abad ke-20.Daerah dengan populasi signifikanBahasaMandarin Chinese dan beberapa Ibrani (modern)Judeo-Persian (historic)AgamaYudaisme dan Agama asli CinaKelompok etnik terkaitHan Chinese, Yahudi Ashkenazi, Yahudi Sephardi, lainnya Jewish ethnic divisions. Orang Yahudi Agama Yahudi Agama Tuhan Allah dalam Yudaisme Dasar Iman Yahudi Kaballah Hari raya Doa Halakha Mitzvot (Daftar: 613) Rabi Sinagoge Pemb...

 

Alphonse XIIPotret diri (1884)Raja SpanyolBerkuasa28 Desember 1874 – 25 November 1885PendahuluAmadeo I (Raja Spanyol) Francisco Serrano (Presiden Republik)PenerusAlfonso XIIIInformasi pribadiKelahiran(1857-11-28)28 November 1857MadridKematian25 November 1885(1885-11-25) (umur 27)El PardoPemakamanEl EscorialWangsaWangsa BourbonAyahFrancis, Adipati CádizIbuIsabella II dari SpanyolPasanganMercedes dari OrléansMaria Christina dari AustriaAnakMaría de las MercedesMaria TeresaAlfonso XIII...

 

Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. Vật lý thống kê Nhiệt động lực học Thuyết động học chất khí Thống kê hạt Định lí thống kê - spin Hạt sinh đôi Maxwell–Boltzmann Bose–Einstein Fermi–Dirac Bán thốn...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...

 

Maillot arcoíris otorgado a la campeona de la prueba La prueba de línea o ruta élite femenina en el Campeonato Mundial de Ciclismo en Ruta se realiza desde el Mundial de 1958. Palmarés Núm. Año Sede I – XXIV 1927 – 1957 No realizados XXV 1958 Reims ( Francia) Elsy JacobsLuxemburgo Luxemburgo Tamara Novikova URSS Maria Lukshina URSS XXVI 1959 Zandvoort (Países Bajos Países Bajos) Yvonne ReyndersBélgica Bélgica Aino Puronen URSS Vera Gorbacheva&#...

 

Halaman ini berisi artikel tentang Kabupaten. Untuk Kecamatan bernama sama, lihat Kota Kudus, Kudus. Untuk kegunaan lain, lihat Kudus (disambiguasi). Koordinat: 6°51′0″S 110°36′0″E / 6.85000°S 110.60000°E / -6.85000; 110.60000 Kabupaten KudusKabupatenTranskripsi bahasa daerah • Hanacarakaꦏꦸꦢꦸꦱ꧀ • PegonقدوسMasjid Menara Kudus LambangEtimologi: al-QudsJulukan: Kota Kretek, Kota Santri, Jerusalem van JavaMotto:...

Liriomyza taraxaci Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Diptera Famili: Agromyzidae Genus: Liriomyza Spesies: Liriomyza taraxaci Liriomyza taraxaci adalah spesies lalat yang berasal dari genus Liriomyza dan famili Agromyzidae. Lalat ini juga merupakan bagian dari ordo Diptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva Larva lalat ini herbivora dan biasanya memakan daun. Referensi Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Pagl...

 

Gudrun Harrer (2021) Gudrun Harrer (* 24. Februar 1959 in Schwanenstadt, Oberösterreich)[1] ist eine österreichische Journalistin und Nahostexpertin. Inhaltsverzeichnis 1 Leben 2 Auszeichnungen 3 Publikationen 4 Weblinks 5 Einzelnachweise Leben Harrer studierte anfangs Musik in Detmold und Mailand, bevor sie von 1986 bis 1992 an der Universität Wien Arabistik und Islamwissenschaften studierte. 1993 trat sie als Außenpolitikredakteurin in die Tageszeitung Der Standard ein, 1998 wur...

 

马来西亚最高元首Yang di-Pertuan Agong MalaysiaSupreme Head of Malaysia聯邦君主马来西亚最高元首陛下紋章現任苏丹阿都拉2019年1月31日,​4年前​(2019-01-31)就任彭亨州苏丹暨统治者 详情尊稱陛下开国君主端姑阿都拉曼建立1957年8月31日 (1957-08-31)(马来亚联合邦)1963年9月16日 (1963-09-16)(马来西亚)居所 马来西亚吉隆坡国家皇宫产生方式选举君主制(通过统治者会...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2019) دوروثي كلارك ويلسون   معلومات شخصية الميلاد سنة 1904  غاردينر  الوفاة سنة 2003 (98–99 سنة)  أورونو  مواطنة الولايات المتحدة  عضوة في فاي بيتا كابا...

 

У этого термина существуют и другие значения, см. Синява. Посёлок городского типаСтарая Синяваукр. Стара Синява Герб 49°36′ с. ш. 27°37′ в. д.HGЯO Страна  Украина Статус общинный центр Область Хмельницкая область Район Хмельницкий район Глава Здебский Виталий Эду...

 

Спортивная гимнастика на летних Олимпийских играх 1908 Личное многоборье Командное многоборье Соревнования в личном первенстве по спортивной гимнастике среди мужчин на летних Олимпийских играх 1908 прошли 14 и 15 июля. Приняли участие 96 спортсменов из 11 стран. Содержание 1 П...

Indoor arena in Kuala Lumpur, Malaysia 3°8′26″N 101°42′10″E / 3.14056°N 101.70278°E / 3.14056; 101.70278 Nation StadiumExterior view of Nation Stadium in 2023AddressJalan Hang Jebat50150, Kuala Lumpur, MalaysiaOwnerPNB Merdeka Ventures Sdn. Bhd.Capacity10,000ConstructionBroke ground1960Opened19 April 1962 (1962-04-19)Renovated198219852015Construction costRM34 millionProject managerStanley Edward JewkesStructural engineerNg Eng HeanW.J. Cummin...

 

Lock and weir on the River Thames in Berkshire, England Sonning LockSonning Lock from the head gates.WaterwayRiver ThamesCountyBerkshireMaintained byEnvironment AgencyOperationHydraulicFirst built1773Latest built1905Length47.57 m (156 ft 1 in) [1]Width5.46 m (17 ft 11 in)[1]Fall1.63 m (5 ft 4 in)[1]Above sea level115'Distance to Teddington Lock52 milesPower is available out of hours vteSonning Lock Legend Rive...

 

Town in Hertfordshire, England Not to be confused with Waltham Holy Cross. Human settlement in EnglandWaltham CrossThe Eleanor CrossWaltham CrossLocation within HertfordshirePopulation8,577 (2021 census, Waltham Cross ward)OS grid referenceTL360003• London12 mi (19 km) SSWDistrictBroxbourneShire countyHertfordshireRegionEastCountryEnglandSovereign stateUnited KingdomPost townWALTHAM CROSSPostcode districtEN8Dialling code01992PoliceHertf...

Railway Station in West Bengal, India Majerhat Kolkata Suburban Railway StationMajerhat Railway StationGeneral informationLocationMajerhat, Kolkata, West BengalIndiaCoordinates22°31′09″N 88°19′20″E / 22.5190536°N 88.3221307°E / 22.5190536; 88.3221307Elevation9 metres (30 ft)Owned byIndian RailwaysOperated byEastern RailwayLine(s)Budge Budge Branch lineKolkata Circular linePlatforms5Tracks7Connections MajerhatConstructionStructure typeStandard (on-groun...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Gol bunuh diri – berita · surat kabar · buku · cendekiawan · JSTOR Gol bunuh diri adalah istilah dalam olahraga sepak bola ketika seorang pemain memasukkan bola ke gawangnya sendiri sehingga dianggap seb...

 

Voce principale: Diocesi di Casale Monferrato. Il territorio della diocesi Le parrocchie della diocesi di Casale Monferrato sono 115. Indice 1 Zone pastorali 1.1 Zona pastorale di Casale-Sant'Evasio 1.2 Zona pastorale di Casale-Quattro Evangelisti 1.3 Zona pastorale di San Giovanni Paolo II 1.4 Zona pastorale di Madonna dell'Argine – San Giovanni Bosco 1.5 Zona pastorale del Santissimo Salvatore 1.6 Zona pastorale di Santa Lucia 1.7 Zona pastorale di Beato Pier Giorgio Frassati 1.8 Zona pas...

Members of the New South Wales Legislative Council who served in the 58th Parliament were elected at the 2019 and 2023 elections. As members serve eight-year terms, half of the Council was elected in 2019 and did not face re-election in 2023, and the members elected in 2023 will not face re-election until 2031.[1][2] The President was Matthew Mason-Cox until May 2023[3] and Ben Franklin from May 2023. Name Party End term Years in office Mark Banasiak   Shooters, F...

 

  لمعانٍ أخرى، طالع أشلي ميلر (توضيح). أشلي ميلر (كاتب)   معلومات شخصية اسم الولادة (بالإنجليزية: Ashley Edward Miller)‏  الميلاد 16 مارس 1971 (53 سنة)  مواطنة المملكة المتحدة  عضو في نقابة الكتاب الأمريكية الغربية  الحياة العملية المدرسة الأم كلية وليام وماري  المهنة ك...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!