2021 in paleoichthyology

List of years in paleoichthyology
In paleontology
2018
2019
2020
2021
2022
2023
2024
In paleobotany
2018
2019
2020
2021
2022
2023
2024
In arthropod paleontology
2018
2019
2020
2021
2022
2023
2024
In paleoentomology
2018
2019
2020
2021
2022
2023
2024
In paleomalacology
2018
2019
2020
2021
2022
2023
2024
In reptile paleontology
2018
2019
2020
2021
2022
2023
2024
In archosaur paleontology
2018
2019
2020
2021
2022
2023
2024
In mammal paleontology
2018
2019
2020
2021
2022
2023
2024

This list of fossil fish research presented in 2021 is a list of new taxa of jawless vertebrates, placoderms, acanthodians, fossil cartilaginous fishes, bony fishes, and other fishes that were described during the year, as well as other significant discoveries and events related to paleoichthyology that occurred in 2021.

Jawless vertebrates

Name Novelty Status Authors Age Type locality Location Notes Images

Falxcornus[1]

Gen. et sp. nov

In press

Meng & Gai

Devonian (Lochkovian)

Xishancun Formation

 China

A member of Galeaspida belonging to the family Tridensaspidae. Genus includes new species F. liui.

Hongshanaspis[2]

Gen. et sp. nov

Valid

Liu et al.

Silurian (Telychian)

Qingshui Formation

 China

A member of Galeaspida belonging to the family Hanyangaspidae. Genus includes new species H. inexpectatus.

Jiangxialepis[3]

Gen. et sp. nov

Valid

Liu et al.

Silurian (Telychian)

Fentou Formation

 China

A member of Galeaspida belonging to the group Eugaleaspidiformes. The type species is J. retrospina.

Qushiaspis[4]

Gen. et sp. nov

Valid

Jiang et al.

Early Devonian

Xujiachong Formation

 China

A member of Galeaspida. Genus includes new species Q. elaia.

Jawless fishes research

  • A study on the phylogenetic relationships of cyathaspidids is published by Elliott, Lassiter & Blieck (2021).[5]
  • Miyashita et al. (2021) report larval and juvenile forms of four stem lampreys from the Paleozoic era (Hardistiella, Mayomyzon, Pipiscius and Priscomyzon), including a hatchling-to-adult growth series of Priscomyzon, and report that the studied larvae display features that are otherwise unique to adult modern lampreys, and lack the defining traits of ammocoetes.[6]
  • A study on the anatomy and likely feeding ecology of Mesomyzon mengae, based on data from new, well-preserved specimens, is published by Wu, Chang & Janvier (2021).[7]
  • A study on the histology of the dermal skeleton in Procephalaspis oeselensis, Aestiaspis viitaensis, Dartmuthia gemmifera and four species of Tremataspis is published by Bremer et al. (2021), who interpret their findings as indicative of the emergence of the complex pore-canal system in Tremataspis through the modification of the structures already present in other taxa.[8]
  • A study aiming to determine whether the earliest vertebrates may have swum under various conditions without a clearly-differentiated tail fin, based on data from an abstracted model of Metaspriggina walcotti, is published by Rival, Yang & Caron (2021).[9]
  • A study on the morphological and functional diversity of osteostracan and galeaspid headshields, and on its implications for the knowledge of the ecology of the immediate jawless relatives of jawed vertebrates, is published by Ferrón et al. (2021).[10]
  • Redescription of Nochelaspis maeandrine is published by Meng, Zhu & Gai (2021).[11]
  • A study on the anatomy of a dorsal head shield of Kalanaspis delectabilis is published by Tinn et al. (2021).[12]

Placoderms

Name Novelty Status Authors Age Type locality Country Notes Images

Bianchengichthys[13]

Gen. et sp. nov

Valid

Li, Zhu & Zhu in Li et al.

Silurian (Ludfordian)

Xiaoxi Formation

 China

A placoderm closely related to the last common ancestor of bony and cartilaginous fishes. The type species is B. micros.

Leptodontichthys[14]

Gen. et sp. nov

Jobbins et al.

Devonian (Givetian)

Taboumakhlouf Formation

 Morocco

A member of Arthrodira belonging to the family Plourdosteidae. The type species is L. ziregensis.

Placoderm research

  • Zhu et al. (2021) use CT scanning to reveal the endocast of Brindabellaspis stensioi, and evaluate the implications of its anatomy for the knowledge of the phylogenetic relationships of early jawed vertebrates.[15]
  • Redescription of the anatomy of the headshield of Parayunnanolepis xitunensis is published by Wang & Zhu (2021).[16]
  • Description of new fossil material of Palaeacanthaspis vasta from the Devonian (Lochkovian) Chortkiv Formation (Ukraine), and a study on the phylogenetic relationships of this species, is published by Dupret et al. (2021).[17]

Acanthodians

Name Novelty Status Authors Age Type locality Country Notes Images

Dobunnacanthus[18]

Gen. et comb. nov

Valid

Dearden et al.

Devonian

 United Kingdom

A new genus for "Vernicomacanthus" waynensis Miles (1973)

Nostolepis digitus[19]

Sp. nov

Valid

Li et al.

Devonian (Lochkovian)

Xitun Formation

 China

Nostolepis qujingensis[19]

Sp. nov

Valid

Li et al.

Devonian (Lochkovian)

Xitun Formation

 China

Acanthodian research

  • A study on the development of teeth in acanthodians, and on its implications for the knowledge of the evolution of teeth of jawed vertebrates, is published by Rücklin et al. (2021).[20]
  • A study on the anatomy of teeth, jaws and associated oral structures of acanthodians, and on their implications for the knowledge of the evolution of dentition of modern cartilaginous fishes, is published by Dearden & Giles (2021).[21]

Cartilaginous fishes

Name Novelty Status Authors Age Type locality Location Notes Images

Aquilolamna[22]

Gen. et sp. nov

Vullo et al.

Late Cretaceous (Turonian)

Agua Nueva Formation

 Mexico

A probable planktivorous shark placed in the new family Aquilolamnidae, of uncertain placement. Possibly a member of Lamniformes. The type species is A. milarcae.

Carcharhinus dudoni[23]

Sp. nov

Valid

Canevet & Lebrun

Miocene

 France

A species of Carcharhinus.

Carcharhinus pedronii[23]

Sp. nov

Valid

Canevet & Lebrun

Miocene

 France

A species of Carcharhinus.

Carcharhinus tingae[24]

Sp. nov

Valid

Cicimurri & Ebersole

Eocene (Bartonian)

 United States
( Louisiana)

A species of Carcharhinus.

Cladodus gailensis[25]

Sp. nov

Valid

Feichtinger et al.

Carboniferous (Serpukhovian)

 Austria

Dracopristis[26]

Gen. et sp. nov

Valid

Hodnett et al.

Late Carboniferous (Kasimovian)

Atrasado Formation

 United States
( New Mexico)

A medium-sized ctenacanthiform shark known from a complete skeleton with soft tissue. The type species is D. hoffmanorum.

Durnonovariaodus[27]

Gen. et sp. nov

Valid

Stumpf et al.

Late Jurassic (Tithonian)

Kimmeridge Clay

 United Kingdom

A member of the family Hybodontidae. The type species is D. maiseyi.

Favusodus[28]

Gen. et sp. nov

Valid

Li et al.

Triassic (LadinianCarnian)

 China

A member of Euselachii. Genus includes new species F. orientalis.

Junggarensis[29]

Gen. et sp. nov

Valid

Roelofs et al.

Devonian (Famennian)

 Mongolia

Genus includes new species J. ambiguus.

Keichouodus[28]

Gen. et sp. nov

Valid

Li et al.

Triassic (Ladinian–Carnian)

 China

A member of Euselachii. Genus includes new species K. nimaiguensis.

Keuperodus[30]

Gen. et comb. nov

Valid

Ivanov, Duffin & Richter

Late Triassic (Carnian)

Arden Sandstone Formation
Grabfeld Formation

 Germany
 United Kingdom

A member of the family Jalodontidae. Genus includes "Phoebodus" brodiei Woodward (1893) (interpreted by Ivanov, Duffin & Richter, 2021 as a senior synonym of "Phoebodus" keuperinus Seilacher, 1948).

Lilamna[31]

Gen. et comb. nov

Valid

Greenfield

late Eocene or Cretaceous (uncertain)

 China

A possible member of the family Pseudoscapanorhynchidae. The type species is "Archaeolamna" apophysata Li (1997).

Maiseyacanthus[32]

Gen. et sp. nov

Valid

Bronson

Carboniferous (Mississippian)

Fayetteville Shale

 United States
( Arkansas)

A symmoriiform. The type species is M. ozarkanum.

Maiseyodus[33]

Gen. et comb. nov

Valid

Long et al.

Devonian (Emsian)

Cravens Peak Beds

 Australia

A member of the family Mcmurdodontidae; a new genus for "Mcmurdodus" whitei Turner & Young (1987).

Moskovirhynchus[34]

Gen. et sp. nov

Valid

Popov & Shapovalov

Late Jurassic

 Russia

A chimaera belonging to the family Callorhinchidae. Genus includes new species M. robustus.

Nebriimimus[35]

Gen. et sp. nov

Valid

Collareta et al.

Pliocene (Zanclean)

 Italy

A member of Rajiformes, possibly a skate. The type species is N. wardi.

Negaprion cossardi[23]

Sp. nov

Valid

Canevet & Lebrun

Miocene

 France

A species of Negaprion.

Phoebodus curvatus[36]

Sp. nov

Valid

Ivanov

Devonian (GivetianFrasnian)

 Australia
 Poland
 Russia

Protochimaera[37]

Gen. et sp. nov

Valid

Lebedev & Popov in Lebedev et al.

Carboniferous (ViséanSerpukhovian)

Dashkovo Formation

 Russia
( Moscow Oblast)

A chimaera. Genus includes new species P. mirabilis.

Pseudocorax kindlimanni[38]

Sp. nov

In press

Jambura, Stumpf & Kriwet

Late Cretaceous (Cenomanian)

Sannine Formation

 Lebanon

Ptychodus maghrebianus[39]

Sp. nov

In press

Amadori et al.

Late Cretaceous (Turonian)

 Morocco

Reifella[40]

Gen. et sp. nov

Valid

Ivanov in Ivanov et al.

Permian (Roadian)

Cutoff Formation

 United States
( Texas)

A member of the family Anachronistidae. Genus includes new species R. lata.

Rosaodus[28]

Gen. et sp. nov

Valid

Li et al.

Triassic (Ladinian–Carnian)

 China

A member of Elasmobranchii of uncertain phylogenetic placement. Genus includes new species R. xingyiensis.

Strophodus indicus[41]

Sp. nov

Valid

Sharma & Singh

Middle Jurassic (Bathonian)

Jaisalmer Formation

 India

Marine hybodont shark

Strophodus jaisalmerensis[42]

Sp. nov

In press

Kumar et al.

Jurassic

Jaisalmer Formation

 India

A hybodont shark.

Taeniurops sergiomorai[43]

Sp. nov

Laurito & Valerio

Miocene–Pliocene (MessinianPiacenzian)

Uscari Formation

 Costa Rica

A stingray, a species of Taeniurops.

Triodus aeduorum[44]

Sp. nov

Valid

Luccisano et al.

Early Permian

Autun Basin

 France

Vallisodus[45]

Nom. nov

Valid

Duffin

Late Triassic

Penarth Group

 United Kingdom

A member of Neoselachii; a replacement name for Vallisia Duffin (1982).

Cartilaginous fish research

  • Description of new fossil material of Gualepis elegans from the Lower Devonian of Yunnan (China), and a study on the phylogenetic relationships of this fish, is published by Cui et al. (2021).[46]
  • Mottequin et al. (2021) reject the interpretation of Spiraxis interstrialis as chondrichthyan egg cases, and evaluate the implications of this reinterpretation for the knowledge of the evolution of oviparity in cartilaginous fishes.[47]
  • Description of the first known skull remains of Onchopristis numidus from the Cretaceous Kem Kem Group (Morocco), and a study on the anatomy and phylogenetic relationships of this species, is published by Villalobos-Segura et al. (2021), who name a new family Onchopristidae.[48]
  • New, exceptionally well-preserved skeleton of Asteracanthus ornatissimus, preserved with teeth that markedly differ from other teeth referred to Asteracanthus, is described from the Tithonian Altmühltal Formation (Germany) by Stumpf et al. (2021), who interpret this specimen as indicating that Asteracanthus and Strophodus represent two valid genera distinct from all other hybodontiforms.[49]
  • A study on the morphological diversity of teeth of lamniform sharks from mid-Cretaceous assemblages in Australia, and on its implications for the knowledge of the composition of mid-Cretaceous shark communities and their recovery in the aftermath of the Cenomanian-Turonian boundary event, is published by Bazzi, Kear & Siversson (2021).[50]
  • A study on the biomechanics of teeth of five species of Otodus, aiming to assess the functional significance of morphological trends in otodontid teeth and to test whether the morphology of otodontid teeth enabled the transition from piscivory to predation on marine mammals and the evolution of titanic body sizes, is published by Ballell & Ferrón (2021)[51]
  • A study on a bonebed in the Oligocene Chandler Bridge Formation (South Carolina, United States) with a large sample of Carcharocles angustidens dominated by small teeth is published by Miller, Gibson & Boessenecker (2021), who interpret this bonebed as a nursery area for C. angustidens.[52]
  • A study on growth patterns, reproductive biology and likely lifespan of Otodus megalodon is published by Shimada et al. (2021).[53]
  • Perez, Leder & Badaut (2021) present a novel method for estimating body size in fossil lamniform sharks, and attempt to determine the body size of Otodus megalodon.[54]
  • Revision of the fossil record of the extant tiger shark and the extinct members of the tiger shark lineage is published by Türtscher et al. (2021).[55]
  • Redescription of Striatolamia tchelkarnurensis is published by Malyshkina (2021).[56]
  • Shark teeth which might represent the first occurrence of the blacknose shark in the Pacific Ocean are described from the Pliocene Upper Onzole Formation (Ecuador) by Collareta et al. (2021), who evaluate the implications of this finding for the knowledge of the evolutionary history of the blacknose shark and the whitenose shark.[57]
  • Two fossil teeth of the blacktip shark are reported from lower Pliocene marine deposits of Tuscany (Italy) by Collareta et al. (2021), representing the first known occurrence of this species in the fossil record from both Europe and the Mediterranean Basin.[58]
  • A study on the morphological diversity of extant and fossil shark teeth, and on their implications for the knowledge of the evolution of lamniform and carcharhiniform sharks throughout the last 83 million years, is published by Bazzi et al. (2021).[59]
  • A study on the evolutionary history of sharks across the Cretaceous–Paleogene extinction event, as indicated by morphological diversity of shark teeth across the Cretaceous–Paleogene interval, is published by Bazzi et al. (2021).[60]
  • Evidence of a previously unknown major extinction of sharks in the early Miocene, ~19 million years ago, is presented by Sibert & Rubin (2021);[61] the study is subsequently criticized by Naylor et al. (2021)[62][63] and Feichtinger et al. (2021).[64][65]
  • A study on shark scales from mid-Holocene (~7,000-y-old) and modern reef sediments in Bocas del Toro (Panama), aiming to determine changes of shark abundance in this area since the mid-Holocene and their possible causes, is published by Dillon et al. (2021).[66]

Ray-finned fishes

Name Novelty Status Authors Age Type locality Country Notes Images

Achirus australis[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation
Navidad Formation

 Chile

A species of Achirus.

Achirus chungkuz[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation
Navidad Formation

 Chile

A species of Achirus.

Agonopsis cume[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation
Navidad Formation

 Chile

A species of Agonopsis.

Agoultpycnodus[68]

Gen. et comb. nov

Valid

Taverne & Capasso

Late Cretaceous (Cenomanian-Turonian)

Akrabou Formation

 Morocco

A member of the family Pycnodontidae. The type species is A. aldrovandii.

Alilepis texasensis[40]

Sp. nov

Valid

Bakaev in Ivanov et al.

Permian (Roadian)

Cutoff Formation

 United States
( Texas)

A member of the family Elonichthyidae.

Anomoeodus aegypticus[69]

Sp. nov

Valid

Capasso et al.

Late Cretaceous (Maastrichtian)

Dakhla Formation

 Egypt

A member of Pycnodontiformes.

Anomoeodus caddoi[70]

Sp. nov

Valid

Suarez et al.

Early Cretaceous (Albian)

Holly Creek Formation

 United States
( Arkansas)

A member of Pycnodontiformes.

Aphanolebias bettinae[71]

Sp. nov

In press

Bradić-Milinović, Rundić & Schwarzhans

Miocene

 Serbia

A member of the family Valenciidae.

Apuliadercetis gonzalezae[72]

Sp. nov

In press

Díaz-Cruz, Alvarado-Ortega & Cantalice

Late Cretaceous (Campanian)

Angostura Formation

 Mexico

A member of Aulopiformes belonging to the family Dercetidae.

Archaemacruroides vanknippenbergi[73]

Sp. nov

In press

Schwarzhans & Jagt

Late Cretaceous (Maastrichtian)

Maastricht Formation

 Belgium
 Netherlands

A member of Gadiformes of uncertain phylogenetic placement.

Ariosoma mesohellenica[74]

Sp. nov

Valid

Agiadi, Koskeridou & Thivaiou

Miocene (Aquitanian)

 Greece

A species of Ariosoma.

Austelliscus[75]

Gen. et sp. nov

Figueroa, Weinschütz & Friedman

Middle Devonian or older

Paraná Basin

 Brazil

An early ray-finned fish. Genus includes new species A. ferox.

Auxis koreanus[76]

Sp. nov

Valid

Nam, Nazarkin & Bannikov

Middle Miocene

Duho Formation

 South Korea

A species of Auxis.

Bardackichthys[77]

Gen. et sp. nov

In press

Hacker & Shimada

Late Cretaceous (Cenomanian)

Woodbine Formation

 United States
( Texas)

A member of Ichthyodectiformes. Genus includes new species B. carteri.

Bobbitichthys[78]

Gen. et comb. nov

Valid

Schwarzhans, Milàn & Carnevale

Paleocene (Selandian)

Kerteminde Marl

 Denmark

A member of the family Macrouridae. The type species is "Hymenocephalus" rosenkrantzi Schwarzhans (2003).

Brauccipycnodus[79]

Gen. et comb. nov

Valid

Taverne & Capasso

Early Cretaceous (Albian)

 Italy

A member of the family Pycnodontidae. The type species is "Proscinetes" pillae Capasso (2007).

Briveichthys[80]

Gen. et sp. nov

Valid

Štamberg & Steyer

Permian

Brive Basin

 France

A pygopterid. Genus includes new species B. chantepieorum.

Capromimus undulatus[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Capromimus.

Cheirolepis jonesi[81]

Sp. nov

In press

Newman et al.

Devonian (Givetian)

Tordalen Formation

 Norway

Chiloconger chilensis[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Chiloconger.

Choichix[82]

Gen. et sp. nov

Valid

Cantalice, Than-Marchese & Villalobos-Segura

Late Cretaceous (Cenomanian)

 Mexico

A member of Acanthopterygii of uncertain phylogenetic placement. Genus includes new species C. alvaradoi.

Citharichthys parvisulcus[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Ipún beds
Lacui Formation
Navidad Formation
Ranquil Formation

 Chile

A species of Citharichthys.

Citharichthys vergens[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation
Navidad Formation

 Chile

A species of Citharichthys.

Clarotes eocenicus[83]

Sp. nov

Valid

Murray & Holmes

Late Eocene

Jebel Qatrani Formation

 Egypt

A species of Clarotes.

Coccolepis solnhofensis[84]

Sp. nov

Valid

López-Arbarello & Ebert

Late Jurassic (Tithonian)

Altmühltal Formation

 Germany

A member of Chondrostei belonging to the family Coccolepididae.

Coelorinchus fidelis[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Ipún Beds
Lacui Formation
Navidad Formation

 Chile

A species of Coelorinchus.

Coelorinchus rapelanus[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Coelorinchus.

Cottunculus primaevus[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation
Navidad Formation

 Chile

A species of Cottunculus.

Cretaserranus[73]

Gen. et sp. nov

In press

Schwarzhans & Jagt

Late Cretaceous (Maastrichtian)

Maastricht Formation

 Belgium
 Netherlands

A member of Perciformes, possibly belonging to the family Serranidae. Genus includes new species C. maastrichtensis.

Ctenopharyngodon orientalis[85]

Sp. nov

Valid

Su, Chang & Chen

Miocene

Xiacaowan Formation

 China

A species of Ctenopharyngodon.

Ctenopharyngodon xiejiaensis[85]

Sp. nov

Valid

Su, Chang & Chen

Miocene

Xiejia Formation

 China

A species of Ctenopharyngodon.

Dezaoia[85]

Gen. et sp. nov

Valid

Su, Chang & Chen

Oligocene

Ulanbulage Formation

 China

A member of the family Cyprinidae belonging to the subfamily Squaliobarbinae. The type species is D. saintjaquensis.

Diastemapycnodus[86]

Gen. et sp. nov

In press

Abu El-Kheir et al.

Late Cretaceous (Maastrichtian)

Dakhla Formation

 Egypt

A member of Pycnodontiformes. Genus includes new species D. tavernensis.

Elongofuro augustilgi[87]

Sp. nov

Valid

Ebert

Late Jurassic (Kimmeridgian)

Nusplingen Limestone

 Germany

A member of Ophiopsiformes.

Eoctenopharyngodon[85]

Gen. et sp. nov

Valid

Su, Chang & Chen

Oligocene

Dongying Formation

 China

A member of the family Cyprinidae belonging to the subfamily Squaliobarbinae. The type species is E. liui.

Eotexachara[88]

Gen. et sp. nov

In press

Wick

Late Cretaceous (Campanian)

Aguja Formation

 United States
( Texas)

A member of Characiformes. Genus includes new species E. malateres.

Feroxichthys panzhouensis[89]

Sp. nov

Valid

Ma, Xu & Geng

Middle Triassic (Anisian)

Guanling Formation

 China

A member of the family Colobodontidae.

Garganomyctophum[90]

Gen. et sp. nov

Valid

Taverne

Late Cretaceous (Santonian)

 Italy

A lanternfish. The type species is G. sorbinii.

Gnathophis elongatus[74]

Sp. nov

Valid

Agiadi, Koskeridou & Thivaiou

Miocene (Aquitanian)

 Greece

A species of Gnathophis.

Gnathophis quinzioi[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Gnathophis.

Gobiosoma? axsmithi[91]

Sp. nov

Valid

Ebersole, Cicimurri & Stringer

Oligocene (Rupelian)

Byram Formation

 United States
( Alabama)

A member of the family Gobiidae.

Guiclupea[92]

Gen. et sp. nov

Valid

Chen et al.

Oligocene

 China

A member of Clupeomorpha belonging to the group Ellimmichthyiformes. The type species is G. superstes.

Hellenigobius[93]

Gen. et sp. et comb. nov

Valid

Schwarzhans, Agiadi & Thivaiou

Miocene

 Czech Republic
 Greece
 Italy
 Kazakhstan
 Serbia
 Hungary?

A member of the subfamily Gobionellinae. The type species is H. praeschismatus; genus also includes "Pomatoschistus" bunyatovi Bratishko et al. (2015).

Katyagobius[94]

Gen. et sp. nov

Valid

Reichenbacher & Bannikov

Miocene

 Moldova

A member of the family Gobiidae. The type species is K. prikryli.

Kelliaichthys[95]

Nom. nov

Valid

Schultze in Schultze et al.

 Kazakhstan

A replacement name for Kellia Kazantseva-Selezneva (1980).

Klincigobus haraldahnelti[71]

Sp. nov

In press

Bradić-Milinović, Rundić & Schwarzhans

Miocene

 Serbia

A member of the family Gobiidae.

Krumvirichthys[96]

Gen. et sp. nov

Valid

Přikryl

Oligocene–early Miocene

 Czech Republic

A deep-sea smelt. The type species is K. brzobohatyi.

Kuhlia orientalis[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation
Navidad Formation

 Chile

A flagtail.

Lampanyctus ipunensis[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Ipún beds

 Chile
 New Zealand

A species of Lampanyctus.

Larimichthys koae[97]

Sp. nov

In press

Lin & Chien

Late Miocene

Tapu Formation

 Taiwan

A species of Larimichthys.

Lepophidium chonorum[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation
Navidad Formation

 Chile

A species of Lepophidium.

Lepophidium mapucheorum[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Lepophidium.

Maurolicus brevirostris[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Maurolicus.

Navidadichthys[67]

Gen. et sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

Possibly a member of the family Prototroctidae. The type species is N. mirus.

Neuburgichthys[95]

Nom. nov

Valid

Schultze in Schultze et al.

 Kazakhstan

A replacement name for Neuburgia Kazantseva-Selezneva (1980).

Nezumia epuge[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation
Navidad Formation

 Chile

A species of Nezumia.

Nibea chaoi[97]

Sp. nov

In press

Lin & Chien

Late Miocene

Tapu Formation

 Taiwan

A species of Nibea.

Oshiaichthys[95]

Nom. nov

Valid

Schultze in Schultze et al.

Triassic

 Kyrgyzstan

A replacement name for Oshia Sytchevskaya (1999).

Palaeopantodon[98]

Gen. et sp. nov

Valid

Taverne

Late Cretaceous (Cenomanian)

 Lebanon

A member of the family Pantodontidae. The type species is P. vandersypeni.

Pankowskipiscis[99]

Gen. et sp. nov

Valid

Taverne

Late Cretaceous (Cenomanian)

 Lebanon

A member of the family Pantodontidae. The type species is P. haqelensis.

Paracarapus[67]

Gen. et sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A pearlfish. The type species is P. chilensis.

Peltoperleidus asiaticus[100]

Sp. nov

Valid

Xu

Middle Triassic (Anisian)

Guanling Formation

 China

A member of Neopterygii belonging to the group Louwoichthyiformes.

Petersichthys[101]

Gen. et sp. nov

Valid

Taverne

Late Cretaceous (Cenomanian)

 Lebanon

A member of the family Pantodontidae. The type species is P. libanicus.

Physiculus pichi[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Physiculus.

Pinichthys shirvanensis[102]

Sp. nov

Valid

Bannikov

Miocene

 Russia
( Krasnodar Krai)

A member of Perciformes belonging to the group Stromateoidei.

Plesiogobius[93]

Gen. et sp. et comb. nov

Valid

Schwarzhans, Agiadi & Thivaiou

Miocene (Aquitanian)

 Greece

A member of the family Gobiidae belonging to the subfamily Gobiinae. The type species is P. felliensis.

Polyipnus bandeli[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Polyipnus.

Portentosoceros[103]

Gen. et comb. nov

Valid

Nazarkin & Bannikov

Miocene

 Russia
( Sakhalin Oblast)

A member of Percoidei of uncertain phylogenetic placement; a new genus for "Pentaceros" sakhaliniсus Gretchina (1975).

Primuluchara[88]

Gen. et sp. nov

In press

Wick

Late Cretaceous (Campanian)

Aguja Formation

Dinosaur Park Formation

 United States
( Texas)

 Canada ( Alberta)

A member of Characiformes. Genus includes new species P. laramidensis.

Pseudohilsa nikosi[104]

Sp. nov

Valid

Kevrekidis, Arratia & Reichenbacher in Kevrekidis et al.

Late Miocene

 Greece

A member of the family Clupeidae.

Pseudolesueurigobius[94]

Gen. et sp. nov

Valid

Reichenbacher & Bannikov

Miocene

 Moldova

A member of the family Gobiidae. The type species is P. manfredi.

Pseudonus humilis[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Ipún beds
Navidad Formation

 Chile

A species of Pseudonus.

Pteronisculus changae[105]

Sp. nov

Valid

Ren & Xu

Middle Triassic (Anisian)

Guanling Formation

 China

Pterothrissus transpacificus[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Pterothrissus.

Pythonichthys panulus[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation

 Chile

A species of Pythonichthys.

Raususetarches[106]

Gen. et sp. nov

Valid

Yabumoto & Nazarkin

Late Miocene

Koshikawa Formation

 Japan

A member of the family Scorpaenidae. Genus includes new species R. sakurai.

Rhinocephalus cretaceus[73]

Sp. nov

In press

Schwarzhans & Jagt

Late Cretaceous (Maastrichtian)

Maastricht Formation

 Belgium

A member of the family Merlucciidae.

Rhynchoconger chiloensis[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Rhynchoconger.

Sarmatigobius[94]

Gen. et sp. et comb. nov

Valid

Reichenbacher & Bannikov

Miocene

 Moldova

A member of the family Gobiidae. The type species is S. compactus; genus also includes "Hesperichthys" iugosus Schwarzhans, Brzobohatý & Radwańska (2020).

Saurichthys sceltrichensis[107]

Sp. nov

Valid

Renesto, Magnani & Stockar

Middle Triassic (Ladinian)

Meride Limestone

  Switzerland

Severnichthus[108][109]

Gen. et sp. nov

In press

Stringer & Schwarzhans

Late Cretaceous (Maastrichtian)

Severn Formation

 United States
( Maryland)

Possibly a member of Polymixiiformes. Genus includes new species S. bourdoni.

Sirembola supersa[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Lacui Formation

 Chile

A cusk-eel.

Spectrunculus sparsus[67]

Sp. nov

Schwarzhans & Nielsen

Early Miocene

Navidad Formation

 Chile

A species of Spectrunculus.

Taosciaena[97]

Gen. et 2 sp. nov

In press

Lin & Chien

Late Miocene

Tapu Formation

 Taiwan

A member of the family Sciaenidae. The type species is T. jiangi; genus also includes T. hui.

Toxopyge vracevicensis[71]

Sp. nov

In press

Bradić-Milinović, Rundić & Schwarzhans

Miocene

 Serbia

A member of the family Gobiidae.

Wilsonium[110]

Gen. et comb. nov

Valid

Liu

Early Eocene

Allenby Formation

 Canada
( British Columbia)

A Catostomidae sucker.
The type species is "Amyzon" brevipinne (1893).

Yarigobius[94]

Gen. et 2 sp. nov

Valid

Reichenbacher & Bannikov

Miocene

 Moldova

A member of the family Gobiidae. The type species is Y. decoratus; genus also includes Y. naslavcensis.

Ray-finned fish research

  • Putative paraxial ossicle of a member of the family Molidae, possibly representing the first fossil find of the genus Mola from the Mediterranean Basin reported to date, is described from the Miocene Pietra Leccese Formation (Apulia, Italy) by Collareta et al. (2021).[111]
  • A platysomid specimen, representing the earliest deep-bodied actinopterygian reported to date, is described from the Carboniferous (Tournaisian) Horton Bluff Formation (Canada) by Wilson, Mansky & Anderson (2021), who evaluate the implications of this findings for the knowledge of the evolution of early ray-finned fishes.[112]
  • A review of the fossil record of Early–Middle Triassic marine bony fishes, aiming to determine the implications of poor fossil record from the late Olenekian-early middle Anisian interval on the knowledge of the Triassic radiation of bony fishes, is published by Romano (2021).[113]
  • A diverse assemblage of late Maastrichtian and Paleocene ray-finned fishes is described from Evrytania (Greece) by Argyriou & Davesne (2021).[114]
  • A study on the diversity of fishes from upper Paleocene microfossil localities in the Ravenscrag Formation (Saskatchewan, Canada) is published by Sinha et al. (2021).[115]
  • New fish fauna dating to the Paleocene–Eocene Thermal Maximum, indicating that diverse fish communities thrived in the paleotropics during this time period, is reported from Egypt by El-Sayed et al. (2021).[116]
  • Heingård et al. (2021) report preservation of residues of both internal and integumentary tissues in the form of dark organic stains in fossil fish larvae from the Eocene (Ypresian) Stolleklint Clay (Ølst Formation, Denmark).[117]
  • Revision of the fossil material of sturgeons from the Upper Miocene deposits of southern Ukraine is published by Hilton, Kovalchuk & Podoplelova (2021).[118]
  • A study on the morphological diversity and evolution of pycnodontiforms is published by Cawley et al. (2021).[119]
  • A study on fossil crushing dentitions of Pycnodus zeaformis and P. maliensis, providing evidence of a distinct pattern of gap-filling tooth addition in pycnodonts, with individual large teeth replaced by multiple small teeth, is published by Collins & Underwood (2021).[120]
  • A study on the histology of teeth and bones of Neoproscinetes penalvai and bones of Tepexichthys aranguthyorum is published by Meunier et al. (2021).[121]
  • A redescription of Atacamichthys greeni is published by Arratia et al. (2021), who interpret it as a stem-group teleost, and name the new family Atacamichthyidae.[122]
  • Revision of members of the clade Archaeomaenidae is published by Bean (2021), who considers Madariscus robustus to be a junior synonym of Archaeomaene tenuis.[123]
  • A study on genome size evolution in fossil stem-group teleosts (based on data from bone cell volumes in fossil specimens), aiming to determine the timing of whole-genome duplication in the evolutionary history of teleosts, is published by Davesne et al. (2021).[124]
  • New fossil material of elopomorphs, including the earliest records of members of the genera Albula and Paralbula from Gondwana reported to date and one of the earliest records of the genus Egertonia, is described from the Upper Cretaceous Mahajanga Basin (Madagascar) by Ostrowski (2021).[125]
  • A study on the evolutionary history of lanternfishes, primarily based on the fossil record of otoliths, is published by Schwarzhans & Carnevale (2021).[126]
  • Armbruster & Lujan (2021) identify Taubateia paraiba as a member of Rhinelepinae.[127]

Lobe-finned fishes

Name Novelty Status Authors Age Type locality Country Notes Images

Ceratodus guanganensis[128]

Sp. nov

Valid

Wang et al.

Late Jurassic

Shaximiao Formation

 China

Announced in 2021; the final version of the article naming it was published in 2022.

Eusthenodon bourdoni[129]

Sp. nov

Valid

Downs, Barbosa & Daeschler

Devonian (Famennian)

Catskill Formation

 United States
( Pennsylvania)

Lobe-finned fish research

  • A coelacanth specimen belonging or related to the species Heptanema paradoxum is described from the Ladinian Meride Limestone (Switzerland) by Renesto, Magnani & Stockar (2021), representing the first known coelacanth specimen from the Middle Triassic that undoubtedly bears elongate thin ribs.[130]
  • Fossil material of mawsoniid coelacanths is described from the marine Rhaetian Bonenburg locality (Germany) by Hartung et al. (2021), who interpret this finding as indicating that mawsoniids were already present in Europe in the Late Triassic, and that they inhabited marine environments at the end of the Triassic.[131]
  • Fossil material of a member of genus Mawsonia is described from the Cenomanian Woodbine Formation (Texas, United States; representing the first Cretaceous North American mawsoniid coelacanth reported to date) by Cavin et al. (2021), who evaluate the implications of this finding for the knowledge of potential factors that might have made long survival of the genera Mawsonia and Latimeria possible.[132]
  • An ossified lung of a mawsoniid coelacanth is described from the Maastrichtian of Oued Zem (Morocco) by Brito et al. (2021), representing the last known record of a Mesozoic coelacanth and the first known occurrence of coelacanths in the phosphate deposits of North Africa.[133]
  • A study on the evolution of feeding modes among tetrapodomorphs, as indicated by the anatomy of the skull of Tiktaalik roseae, is published by Lemberg, Daeschler & Shubin (2021), who report the simultaneous occurrence of anatomical modifications of the skull for prey capture through biting, as well as joint morphologies suggestive of cranial kinesis that is also present in suction-feeding fish.[134]
  • A study on the phylogenetic relationships of extant and fossil coelacanths is published by Toriño, Soto & Perea (2021).[135]
  • A study on the morphology and histology of the scales of Miguashaia bureaui, and on its implications for the knowledge of the evolution of the squamation in coelacanths, is published by Mondéjar-Fernández et al. (2021).[136]
  • New fossil remains representing one of the largest known coelacanths ever reported are described from the Middle Jurassic of Normandy (France) by Cavin et al. (2021), who also compare the relationship between taxic diversity and body size diversity in coelacanths and ray-finned fishes over the Devonian–Paleocene time interval.[137]
  • A study on tooth development in Powichthys thorsteinssoni, evaluating its implications for the knowledge of the evolution of the dentition of bony fishes, is published by King, Marone & Rücklin (2021).[138]
  • A study on the anatomy and phylogenetic relationships of Cladarosymblema narrienense is published by Clement et al. (2021).[139]

General research

  • A study on the morphology of the earliest osteocytes in Tremataspis mammillata and Bothriolepis trautscholdi is published by Haridy et al. (2021), who interpret their findings as indicating that the earliest known osteocytes in the fossil record had similar morphology and likely similar physiological capabilities to their modern counterparts, and attempt to determine initial driver favoring evolution of cellular (osteocytic) over acellular (anosteocytic) bones in vertebrates.[140]
  • Two Permian fish assemblages consisting of cartilaginous fishes and ray-finned fishes are reported from the Madumabisa Mudstone Formation (Zambia) by Peecook et al. (2021), who compare these assemblages with middle and late Permian freshwater fish faunas from Australia, Brazil, Chile and South Africa.[141]
  • A middle Miocene freshwater fish fossil fauna is described from the Castilletes Formation (Colombia) by Ballen et al. (2021), report the presence of members of fish groups known from extant Amazonian faunas east of the Andes but absent from faunas west of the Andes, and interpret their presence as evidence that the riverine systems of the Guajira Peninsula were connected to Amazonia during the middle Miocene.[142]

References

  1. ^ Meng, X.; Gai, Z. (2021). "Falxcornus, a new genus of Tridensaspidae (Galeaspida, stem-Gnathostomata) from the Lower Devonian in Qujing, Yunnan, China". Historical Biology: An International Journal of Paleobiology. 34 (5): 897–906. doi:10.1080/08912963.2021.1952198. S2CID 237702255.
  2. ^ Liu, Y. L.; Huang, L. B.; Zong, R. W.; Gong, Y. M. (2021). "New Material of Galeaspids from the Silurian Llandovery in Wuhan of South China". Earth Science. 46 (9): 3307–3320. doi:10.3799/dqkx.2020.343. S2CID 245301687.
  3. ^ Liu, Y.-L.; Huang, L.-B.; Zong, R.-W.; Gong, Y.-M. (2021). "The oldest eugaleaspiform (Galeaspida) from the Silurian Fentou Formation (Telychian, Llandovery) of Wuhan, South China". Journal of Systematic Palaeontology. 19 (4): 253–264. Bibcode:2021JSPal..19..253L. doi:10.1080/14772019.2021.1883755. S2CID 233647126.
  4. ^ Jiang, W.; Zhu, M.; Shi, X.; Li, Q.; Gai, Z. (2021). "Qushiaspis, a new genus of gantarostrataspid fish (Galeaspida, stem-Gnathostomata) from the Lower Devonian of Yunnan, China". Historical Biology: An International Journal of Paleobiology. 33 (12): 3714–3722. Bibcode:2021HBio...33.3714J. doi:10.1080/08912963.2021.1888086. S2CID 233887595.
  5. ^ Elliott, D. K.; Lassiter, L. S.; Blieck, A. (2021). "A phylogenetic analysis of the heterostracan jawless vertebrate family Cyathaspididae". Acta Palaeontologica Polonica. 66 (3): 631–640. doi:10.4202/app.00811.2020.
  6. ^ Miyashita, T.; Gess, R. W.; Tietjen, K.; Coates, M. I. (2021). "Non-ammocoete larvae of Palaeozoic stem lampreys". Nature. 591 (7850): 408–412. Bibcode:2021Natur.591..408M. doi:10.1038/s41586-021-03305-9. ISSN 0028-0836. PMID 33692547. S2CID 232192889.
  7. ^ Wu, F.; Chang, M.-M.; Janvier, P. (2021). "A new look at the Cretaceous lamprey Mesomyzon Chang, Zhang & Miao, 2006 from the Jehol Biota". Geodiversitas. 43 (23): 1293–1307. doi:10.5252/geodiversitas2021v43a23. S2CID 244732189.
  8. ^ Bremer, O.; Qu, Q.; Sanchez, S.; Märss, T.; Fernandez, V.; Blom, H. (2021). "The emergence of a complex pore-canal system in the dermal skeleton of Tremataspis (Osteostraci)". Journal of Morphology. 282 (8): 1141–1157. doi:10.1002/jmor.21359. PMID 33848014. S2CID 233222297.
  9. ^ Rival, D. E.; Yang, W.; Caron, J.-B. (2021). "Fish without Tail Fins—Exploring the Function of Tail Morphology of the First Vertebrates". Integrative and Comparative Biology. 61 (1): 37–49. doi:10.1093/icb/icab004. PMID 33690846.
  10. ^ Ferrón, H. G.; Martínez-Pérez, C.; Rahman, I. A.; de Lucas, V. S.; Botella, H.; Donoghue, P. C. J. (2021). "Functional assessment of morphological homoplasy in stem-gnathostomes". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202719. doi:10.1098/rspb.2020.2719. PMC 7893270. PMID 33467997.
  11. ^ Meng, X.-Y.; Zhu, M.; Gai, Z.-K. (2021). "Redescription of Nochelaspis maeandrine, the largest eugaleaspiform from the Lower Devonian of Qujing, Yunnan". Vertebrata PalAsiatica. 59 (4): 257–272. doi:10.19615/j.cnki.2096-9899.210727.
  12. ^ Tinn, O.; Lang, L.; Märss, T.; Vahur, S.; Kirsimäe, K. (2021). "A demineralized osteostracan fossil from the Silurian Kalana Lagerstätte of Estonia: revealing its internal anatomy and uncovering a unique type of fossilization". Lethaia. 55: 1–13. doi:10.1111/let.12452. S2CID 244629031.
  13. ^ Li, Q.; Zhu, Y.; Lu, J.; Chen, Y.; Wang, J.; Peng, L.; Wei, G.; Zhu, M. (2021). "A new Silurian fish close to the common ancestor of modern gnathostomes". Current Biology. 31 (16): 3613–3620.e2. Bibcode:2021CBio...31E3613L. doi:10.1016/j.cub.2021.05.053. ISSN 0960-9822. PMID 34146483. S2CID 235477130.
  14. ^ Jobbins, M.; Rücklin, M.; Argyriou, T.; Klug, C. (2021). "A large Middle Devonian eubrachythoracid 'placoderm' (Arthrodira) jaw from northern Gondwana". Swiss Journal of Palaeontology. 140 (1): Article 2. Bibcode:2021SwJP..140....2J. doi:10.1186/s13358-020-00212-w. PMC 7809001. PMID 33488510.
  15. ^ Zhu, Y.; Giles, S.; Young, G. C.; Hu, Y.; Bazzi, M.; Ahlberg, P. E.; Zhu, M.; Lu, J. (2021). "Endocast and bony labyrinth of a Devonian "placoderm" challenges stem gnathostome phylogeny". Current Biology. 31 (5): 1112–1118.e4. Bibcode:2021CBio...31E1112Z. doi:10.1016/j.cub.2020.12.046. PMID 33508218. S2CID 231723110.
  16. ^ Wang, Y.; Zhu, M. (2021). "New data on the headshield of Parayunnanolepis xitunensis (Placodermi, Antiarcha), with comments on nasal capsules in antiarchs". Journal of Vertebrate Paleontology. 40 (6): e1855189. doi:10.1080/02724634.2020.1855189. S2CID 233931146.
  17. ^ Dupret, V.; Szaniawski, H.; Dec, M.; Szrek, P. (2021). "New cranial material of the acanthothoracid placoderm Palaeacanthaspis vasta from the Lower Devonian of Podolia—phylogenetic and taxonomic significance". Acta Palaeontologica Polonica. 66 (2): 337–347. doi:10.4202/app.00857.2020. hdl:1885/294106.
  18. ^ Dearden, R. P.; den Blaauwen, J. L.; Sansom, I. J.; Burrow, C. J.; Davidson, R. G.; Newman, M. J.; Ko, A.; Brazeau, M. D. (2021). "A revision of Vernicomacanthus Miles with comments on the characters of stem-group chondrichthyans" (PDF). Papers in Palaeontology. 7 (4): 1949–1976. Bibcode:2021PPal....7.1949D. doi:10.1002/spp2.1369. S2CID 237797892.
  19. ^ a b Li, Q.; Cui, X.; Andreev, P. S.; Zhao, W.; Wang, J.; Peng, L.; Zhu, M. (2021). "Nostolepis scale remains (stem Chondrichthyes) from the Lower Devonian of Qujing, Yunnan, China". PeerJ. 9: e11093. doi:10.7717/peerj.11093. PMC 8109008. PMID 34012725.
  20. ^ Rücklin, M.; King, B.; Cunningham, J. A.; Johanson, Z.; Marone, F.; Donoghue, P. C. J. (2021). "Acanthodian dental development and the origin of gnathostome dentitions". Nature Ecology & Evolution. 5 (7): 919–926. Bibcode:2021NatEE...5..919R. doi:10.1038/s41559-021-01458-4. hdl:1983/27f9a13a-1441-410e-b9a7-116b42cd40f7. PMID 33958756. S2CID 233985000.
  21. ^ Dearden, R. P.; Giles, S. (2021). "Diverse stem-chondrichthyan oral structures and evidence for an independently acquired acanthodid dentition". Royal Society Open Science. 8 (11): Article ID 210822. Bibcode:2021RSOS....810822D. doi:10.1098/rsos.210822. PMC 8580420. PMID 34804566.
  22. ^ Vullo, R.; Frey, E.; Ifrim, C.; González González, M. A.; Stinnesbeck, E. S.; Stinnesbeck, W. (2021). "Manta-like planktivorous sharks in Late Cretaceous oceans" (PDF). Science. 371 (6535): 1253–1256. Bibcode:2021Sci...371.1253V. doi:10.1126/science.abc1490. PMID 33737486. S2CID 232271254.
  23. ^ a b c Canevet, J.-M.; Lebrun, P. (2021). "Des dents de requins fossiles. 10. Nouvelles espèces de Carcharhinidae du Miocène de l'Ouest de la France". Fossiles. Revue française de paléontologie. 46: 5–22.
  24. ^ Cicimurri, D. J.; Ebersole, J. A. (2021). "New Paleogene elasmobranch (Chondrichthyes) records from the Gulf Coastal Plain of the United States, including a new species of Carcharhinus de Blainville, 1816". Cainozoic Research. 21 (2): 147–164.
  25. ^ Feichtinger, I.; Ivanov, A. O.; Winkler, V.; Dojen, C.; Kindlimann, R.; Kriwet, J.; Pfaff, C.; Schraut, G.; Stumpf, S. (2021). "Scarce ctenacanthiform sharks from the Mississippian of Austria with an analysis of Carboniferous elasmobranch diversity in response to climatic and environmental changes". Journal of Vertebrate Paleontology. 41 (2): e1925902. Bibcode:2021JVPal..41E5902F. doi:10.1080/02724634.2021.1925902. S2CID 237518044.
  26. ^ Hodnett, J-.P. M; Grogan, E. D.; Lund, R.; Lucas, S. G.; Suazo, T.; Elliott, D. K.; Pruitt, J. (2021). "Ctenacanthiform sharks from the late Pennsylvanian (Missourian) Tinajas Member of the Atrasado Formation, Central New Mexico". New Mexico Museum of Natural History and Science Bulletin. 84: 391–424.
  27. ^ Stumpf, S.; Etches, S.; Underwood, C. J.; Kriwet, J. (2021). "Durnonovariaodus maiseyi gen. et sp. nov., a new hybodontiform shark-like chondrichthyan from the Upper Jurassic Kimmeridge Clay Formation of England". PeerJ. 9: e11362. doi:10.7717/peerj.11362. PMC 8121075. PMID 34026354.
  28. ^ a b c Li, J.; Sun, Z.; Cuny, G.; Ji, C.; Jiang, D.; Zhou, M. (2021). "An unusual shark assemblage from the Ladinian–Carnian interval of South China". Papers in Palaeontology. 8. doi:10.1002/spp2.1404. S2CID 241980979.
  29. ^ Roelofs, B.; Königshof, P.; Trinajstic, K.; Munkhjargal, A. (2021). "Vertebrate microremains from the Late Devonian (Famennian) of western Mongolia". Palaeobiodiversity and Palaeoenvironments. 101 (3): 741–753. Bibcode:2021PdPe..101..741R. doi:10.1007/s12549-021-00503-1. S2CID 237367224.
  30. ^ Ivanov, A. O.; Duffin, C. J.; Richter, M. (2021). "Youngest jalodontid shark from the Triassic of Europe and a revision of the Jalodontidae". Journal of Vertebrate Paleontology. 41 (2): e1931259. Bibcode:2021JVPal..41E1259I. doi:10.1080/02724634.2021.1931259. S2CID 237518008.
  31. ^ Greenfield, T. (2021). "Lilamna nom. nov., a new replacement name for Archaeolamna Li, 1997 (Chondrichthyes: Lamniformes: ?Pseudoscapanorhynchidae)". Zoosystematica Rossica. 30 (2): 213–214. doi:10.31610/zsr/2021.30.2.213.
  32. ^ Bronson, A. W. (2021). "A three-dimensionally preserved stethacanthid cranium and endocast from the Late Mississippian Fayetteville Shale (Arkansas, USA)". In Pradel, A.; Denton, J. S. S.; Janvier, P. (eds.). Ancient Fishes and their Living Relatives: a Tribute to John G. Maisey. Munich, Germany: Verlag Dr. Friedrich Pfeil. pp. 93–100. ISBN 978-3-89937-269-4.
  33. ^ Long, J. A.; Thomson, V.; Burrow, C. J.; Turner, S. (2021). "Fossil chondrichthyan remains from the Middle Devonian Kevington Creek Formation, South Blue Range, Victoria". In Pradel, A.; Denton, J. S. S.; Janvier, P. (eds.). Ancient Fishes and their Living Relatives: a Tribute to John G. Maisey. Munich, Germany: Verlag Dr. Friedrich Pfeil. pp. 239–245. ISBN 978-3-89937-269-4.
  34. ^ Popov, E. V.; Shapovalov, K. M. (2021). "A new genus of elephant fish (Holocephali: Callorhinchidae) from the Late Jurassic of Central Russia". Paleontological Journal. 55 (4): 410–420. Bibcode:2021PalJ...55..410P. doi:10.1134/S0031030121040122. S2CID 237378686.
  35. ^ Collareta, A.; Mollen, F. H.; Merella, M.; Casati, S.; Di Cencio, A. (2021). "Remarkable multicuspid teeth in a new elusive skate (Chondrichthyes, Rajiformes) from the Mediterranean Pliocene". PalZ. 95 (1): 117–128. Bibcode:2021PalZ...95..117C. doi:10.1007/s12542-020-00542-7. ISSN 0031-0220. S2CID 232095666.
  36. ^ Ivanov, A. O. (2021). "A new phoebodontid shark from the Devonian of the Urals and the distribution of Phoebodus species". Paleontological Journal. 55 (3): 301–310. Bibcode:2021PalJ...55..301I. doi:10.1134/S0031030121030096. S2CID 235966785.
  37. ^ Lebedev, O. A.; Popov, E. V.; Bagirov, S. V.; Bolshiyanov, I. P.; Kadyrov, R. I.; Statsenko, E. O. (2021). "The earliest chimaeriform fish from the Carboniferous of Central Russia". Journal of Systematic Palaeontology. 19 (12): 821–846. Bibcode:2021JSPal..19..821L. doi:10.1080/14772019.2021.1977732. S2CID 239509836.
  38. ^ Jambura, P. L.; Stumpf, S.; Kriwet, J. (2021). "Skeletal remains of the oldest known pseudocoracid shark Pseudocorax kindlimanni sp. nov. (Chondrichthyes, Lamniformes) from the Late Cretaceous of Lebanon". Cretaceous Research. 125: Article 104842. Bibcode:2021CrRes.12504842J. doi:10.1016/j.cretres.2021.104842. PMC 7611798. PMID 34642522.
  39. ^ Amadori, M.; Kindlimann, R.; Fornaciari, E.; Giusberti, L.; Kriwet, J. (2021). "A new cuspidate ptychodontid shark (Chondrichthyes; Elasmobranchii), from the Upper Cretaceous of Morocco with comments on tooth functionalities and replacement patterns". Journal of African Earth Sciences. 187: Article 104440. doi:10.1016/j.jafrearsci.2021.104440. PMC 7612291. PMID 35111270. S2CID 245394255.
  40. ^ a b Ivanov, A. O.; Bakaev, A. S.; Nestell, M. K.; Nestell, G. P. (2021). "Fish Microremains from the Cutoff Formation (Roadian, Middle Permian) of the Guadalupe Mountains, West Texas, USA". Micropaleontology. 67 (4): 365–402. Bibcode:2021MiPal..67..365I. doi:10.47894/mpal.67.4.03. S2CID 248075713.
  41. ^ Sharma, A.; Singh, S. (2021). "A small assemblage of marine hybodont sharks from the Bathonian of the Jaisalmer Basin, India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 301 (3): 317–333. doi:10.1127/njgpa/2021/1014. S2CID 239669413.
  42. ^ Kumar, K.; Bajpai, S.; Pandey, P.; Ghosh, T.; Bhattacharya, D. (2021). "Hybodont sharks from the Jurassic of Jaisalmer, western India". Historical Biology: An International Journal of Paleobiology. 34 (6): 953–963. doi:10.1080/08912963.2021.1954920. S2CID 238781606.
  43. ^ Laurito, C. A.; Valerio, A. L. (2021). "Revisión del estatus taxonómico de los Batomorphii fósiles de la cuenca Limón Sur, Costa Rica y descripción de una nueva especie de Dasyatidae". Revista Geológica de América Central. 65: 1–27. doi:10.15517/rgac.v0i65.46685 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  44. ^ Luccisano, V.; Pradel, A.; Amiot, R.; Gand, G.; Steyer, J.-S.; Cuny, G. (2021). "A new Triodus shark species (Xenacanthidae, Xenacanthiformes) from the lowermost Permian of France and its paleobiogeographic implications". Journal of Vertebrate Paleontology. 41 (2): e1926470. Bibcode:2021JVPal..41E6470L. doi:10.1080/02724634.2021.1926470. ISSN 0272-4634. S2CID 237518013.
  45. ^ Duffin, C. J. (2021). "A replacement name for the preoccupied genus name Vallisia Duffin, 1982 (Chondrichthyes: Neoselachii)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 301 (2): 229–232. doi:10.1127/njgpa/2021/1005. S2CID 238737779.
  46. ^ Cui, X.; Qu, Q.; Andreev, P. S.; Li, Q.; Mai, H.; Zhu, M. (2021). "Modeling scale morphogenesis in a Devonian chondrichthyan and scale growth patterns in crown gnathostomes". Journal of Vertebrate Paleontology. 41 (2): e1930018. Bibcode:2021JVPal..41E0018C. doi:10.1080/02724634.2021.1930018. S2CID 237517966.
  47. ^ Mottequin, B.; Goolaerts, S.; Hunt, A. P.; Olive, S. (2021). "The erroneous chondrichthyan egg case assignments from the Devonian: implications for the knowledge on the evolution of the reproductive strategy within chondrichthyans". The Science of Nature. 108 (5): Article number 36. Bibcode:2021SciNa.108...36M. doi:10.1007/s00114-021-01751-z. PMID 34432151. S2CID 237295117.
  48. ^ Villalobos-Segura, Y.; Kriwet, J.; Vullo, R.; Stumpf, S.; Ward, D. J.; Underwood, C. J. (2021). "The skeletal remains of the euryhaline sclerorhynchoid †Onchopristis (Elasmobranchii) from the 'Mid'-Cretaceous and their palaeontological implications". Zoological Journal of the Linnean Society. 193 (2): 746–771. doi:10.1093/zoolinnean/zlaa166.
  49. ^ Stumpf, S.; López-Romero, F. A.; Kindlimann, R.; Lacombat, F.; Pohl, B; Kriwet, J. (2021). "A unique hybodontiform skeleton provides novel insights into Mesozoic chondrichthyan life". Papers in Palaeontology. 7 (3): 1479–1505. Bibcode:2021PPal....7.1479S. doi:10.1002/spp2.1350.
  50. ^ Bazzi, M.; Kear, B. P.; Siversson, M. (2021). "Southern higher-latitude lamniform sharks track mid-Cretaceous environmental change". Gondwana Research. 103: 362–370. doi:10.1016/j.gr.2021.10.012.
  51. ^ Ballell, A.; Ferrón, H. G. (2021). "Biomechanical insights into the dentition of megatooth sharks (Lamniformes: Otodontidae)". Scientific Reports. 11 (1): Article number 1232. doi:10.1038/s41598-020-80323-z. PMC 7806677. PMID 33441828.
  52. ^ Miller, A. E.; Gibson, M. L.; Boessenecker, R. W. (2021). "A megatoothed shark (Carcharocles angustidens) nursery in the Oligocene Charleston Embayment, South Carolina, USA". Palaeontologia Electronica. 24 (2): Article number 24.2.a19. doi:10.26879/1148.
  53. ^ Shimada, K.; Bonnan, M. F.; Becker, M. A.; Griffiths, M. L. (2021). "Ontogenetic growth pattern of the extinct megatooth shark Otodus megalodon—implications for its reproductive biology, development, and life expectancy". Historical Biology: An International Journal of Paleobiology. 33 (12): 3254–3259. Bibcode:2021HBio...33.3254S. doi:10.1080/08912963.2020.1861608.
  54. ^ Perez, V. J.; Leder, R. M.; Badaut, T. (2021). "Body length estimation of Neogene macrophagous lamniform sharks (Carcharodon and Otodus) derived from associated fossil dentitions". Palaeontologia Electronica. 24 (1): Article number 24.1.a09. doi:10.26879/1140.
  55. ^ Türtscher, J.; López-Romero, F. A.; Jambura, P. L.; Kindlimann, R.; Ward, D. J.; Kriwet, J. (2021). "Evolution, diversity, and disparity of the tiger shark lineage Galeocerdo in deep time". Paleobiology. 47 (4): 574–590. Bibcode:2021Pbio...47..574T. doi:10.1017/pab.2021.6. PMC 7612061. PMID 34866693. S2CID 233709854.
  56. ^ Malyshkina, T. P. (2021). "Striatolamia tchelkarnurensis Glickman (Elasmobranchii: Lamniformes), the youngest valid Striatolamia species". Paleontological Journal. 55 (2): 193–204. Bibcode:2021PalJ...55..193M. doi:10.1134/S0031030121020088. S2CID 233746682. Retrieved 2021-02-20.
  57. ^ Collareta, A.; Landini, W.; Bianucci, G.; Di Celma, C. (2021). "Until Panama do us part: new finds from the Pliocene of Ecuador provide insights into the origin and palaeobiogeographic history of the extant requiem sharks Carcharhinus acronotus and Nasolamia velox". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 300 (1): 103–115. doi:10.1127/njgpa/2021/0981. S2CID 234849316.
  58. ^ Collareta, A.; Merella, M.; Casati, S.; Di Cencio, A. (2021). "First fossils of the extant blacktip shark Carcharhinus limbatus from Europe and the Mediterranean Basin". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 301 (1): 109–118. doi:10.1127/njgpa/2021/1002. hdl:11568/1117115. ISSN 0077-7749. S2CID 237731617.
  59. ^ Bazzi, M.; Campione, N. E.; Kear, B. P.; Pimiento, C.; Ahlberg, P. E. (2021). "Feeding ecology has shaped the evolution of modern sharks". Current Biology. 31 (23): 5138–5148.e4. Bibcode:2021CBio...31E5138B. doi:10.1016/j.cub.2021.09.028. PMID 34614390. S2CID 238361599.
  60. ^ Bazzi, M.; Campione, N. E.; Ahlberg, P. E.; Blom, H.; Kear, B. P. (2021). "Tooth morphology elucidates shark evolution across the end-Cretaceous mass extinction". PLOS Biology. 19 (8): e3001108. doi:10.1371/journal.pbio.3001108. PMC 8354442. PMID 34375335.
  61. ^ Sibert, E. C.; Rubin, L. D. (2021). "An early Miocene extinction in pelagic sharks". Science. 372 (6546): 1105–1107. Bibcode:2021Sci...372.1105S. doi:10.1126/science.aaz3549. PMID 34083491. S2CID 235324552.
  62. ^ Naylor, G. J. P.; de Lima, A.; Castro, J. I.; Hubbell, G.; de Pinna, M. C. C. (2021). "Comment on "An early Miocene extinction in pelagic sharks"". Science. 374 (6573): eabj8723. doi:10.1126/science.abj8723. PMID 34882454. S2CID 245012652.
  63. ^ Sibert, E. C.; Rubin, L. D. (2021). "Response to Comment on "An early Miocene extinction in pelagic sharks"". Science. 374 (6573): eabj9522. doi:10.1126/science.abj9522. PMID 34882450. S2CID 245013336.
  64. ^ Feichtinger, I.; Adnet, S.; Cuny, G.; Guinot, G.; Kriwet, J.; Neubauer, T. A.; Pollerspöck, J.; Shimada, K.; Straube, N.; Underwood, C.; Vullo, R.; Harzhauser, M. (2021). "Comment on "An early Miocene extinction in pelagic sharks"" (PDF). Science. 374 (6573): eabk0632. doi:10.1126/science.abk0632. PMID 34882475. S2CID 245100767.
  65. ^ Sibert, E. C.; Rubin, L. D. (2021). "Response to Comment on "An early Miocene extinction in pelagic sharks"". Science. 374 (6573): eabk1733. doi:10.1126/science.abk1733. PMID 34882458. S2CID 245013336.
  66. ^ Dillon, E. M.; McCauley, D. J.; Morales-Saldaña, J. M.; Leonard, N. D.; Zhao, J.; O'Dea, A. (2021). "Fossil dermal denticles reveal the preexploitation baseline of a Caribbean coral reef shark community". Proceedings of the National Academy of Sciences of the United States of America. 118 (29): e2017735118. Bibcode:2021PNAS..11817735D. doi:10.1073/pnas.2017735118. PMC 8307454. PMID 34230097.
  67. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Schwarzhans, W. W.; Nielsen, S. N. (2021). "Fish otoliths from the early Miocene of Chile: a window into the evolution of marine bony fishes in the Southeast Pacific". Swiss Journal of Palaeontology. 140 (1): Article 16. Bibcode:2021SwJP..140...16S. doi:10.1186/s13358-021-00228-w.
  68. ^ Taverne, L.; Capasso, L. (2021). "Osteology and phylogenetic relationships of Agoultpycnodus aldrovandii gen. and sp. nov., a new pycnodont fish genus (Pycnodontidae) from the marine Upper Cretaceous of Morocco" (PDF). Geo-Eco-Trop. 45 (3): 487–495.
  69. ^ Capasso, L.; Tantawy, A. A.; Mousa, M. K.; Wahba, D. G. A.; Abu El-Kheir, G. A. (2021). "Anomoeodus aegypticus n. sp. (Pisces, †Pycnodontiformes) from the late Cretaceous of the Dakhla Formation, Western Desert, Egypt". Thalassia Salentina. 43: 89–104. doi:10.1285/i15910725v43p89.
  70. ^ Suarez, C. A.; Frederickson, J.; Cifelli, R. L.; Pittman, J. G.; Nydam, R. L.; Hunt-Foster, R. K.; Morgan, K. (2021). "A new vertebrate fauna from the Lower Cretaceous Holly Creek Formation of the Trinity Group, southwest Arkansas, USA". PeerJ. 9: e12242. doi:10.7717/peerj.12242. PMC 8542373. PMID 34721970.
  71. ^ a b c Bradić-Milinović, K.; Rundić, L.; Schwarzhans, W. (2021). "Middle Miocene otoliths of freshwater fishes from the Vračević Lake (Serbian Lake System)". Geološki Anali Balkanskoga Poluostrva. 82 (2): 6. doi:10.2298/GABP210616006B. S2CID 243646792.
  72. ^ Díaz-Cruz, J. A.; Alvarado-Ortega, J.; Cantalice, K. M. (2021). "Apuliadercetis gonzalezae sp. nov., a North American Campanian dercetid fish (Teleostei, Aulopiformes) from Tzimol, Chiapas, Mexico". Cretaceous Research. 130: Article 105060. doi:10.1016/j.cretres.2021.105060. S2CID 244594129.
  73. ^ a b c Schwarzhans, W. W.; Jagt, J. W. M. (2021). "Silicified otoliths from the Maastrichtian type area (Netherlands, Belgium) document early gadiform and perciform fishes during the Late Cretaceous, prior to the K/Pg boundary extinction event". Cretaceous Research. 127: Article 104921. Bibcode:2021CrRes.12704921S. doi:10.1016/j.cretres.2021.104921.
  74. ^ a b Agiadi, K.; Koskeridou, E.; Thivaiou, D. (2021). "At the crossroads: early Miocene marine fishes of the proto-Mediterranean Sea". Fossil Record. 24 (2): 233–246. Bibcode:2021FossR..24..233A. doi:10.5194/fr-24-233-2021.
  75. ^ Figueroa, R. T.; Weinschütz, L. C.; Friedman, M. (2021). "The oldest Devonian circumpolar ray-finned fish?". Biology Letters. 17 (3): Article ID 20200766. doi:10.1098/rsbl.2020.0766. PMC 8086947. PMID 33715404.
  76. ^ Nam, G.; Nazarkin, M. V.; Bannikov, A. F. (2021). "First discovery of the genus Auxis (Actinopterygii: Scombridae) in the Neogene of South Korea". Bollettino della Società Paleontologica Italiana. 60 (1): 61–67. doi:10.4435/BSPI.2021.05 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  77. ^ Hacker, R. J.; Shimada, K. (2021). "A new ichthyodectiform fish (Actinopterygii: Teleostei) from the Arlington Member (mid-Cenomanian) of the Upper Cretaceous Woodbine Formation in Texas, USA". Cretaceous Research. 123: Article 104798. Bibcode:2021CrRes.12304798H. doi:10.1016/j.cretres.2021.104798. S2CID 233806833.
  78. ^ Schwarzhans, W.; Milàn, J.; Carnevale, G. (2021). "A tale from the middle Paleocene of Denmark: A tube-dwelling predator documented by the ichnofossil Lepidenteron mortenseni n. isp. and its predominant prey, Bobbitichthys n. gen. rosenkrantzi (Macroridae, Teleostei)". Bulletin of the Geological Society of Denmark. 69: 35–52. doi:10.37570/bgsd-2021-69-02. S2CID 232319300.
  79. ^ Taverne, L.; Capasso, L. (2021). "Osteology and relationships of Brauccipycnodus pillae gen. nov. from the Albian (Lower Cretaceous) of Pietraroja (Campania, southern Italy)" (PDF). Geo-Eco-Trop. 45 (1): 161–175. Archived (PDF) from the original on 2021-02-21. Retrieved 2021-02-14.
  80. ^ Štamberg, S.; Steyer, E. (2021). "New actinopterygians from the Permian of the Brive Basin, and the ichthyofaunas of the French Massif Central". Fossil Imprint. 77 (1): 145–165. doi:10.37520/fi.2021.012. S2CID 245050488.
  81. ^ Newman, M. J.; Burrow, C. J.; den Blaauwen, J. L.; Giles, S. (2021). "A new actinopterygian Cheirolepis jonesi nov. sp. from the Givetian of Spitsbergen, Svalbard". Norwegian Journal of Geology. 101: Article 202103. doi:10.17850/njg101-1-3. S2CID 235506970.
  82. ^ Cantalice, K. M.; Than-Marchese, B. A.; Villalobos-Segura, E. (2021). "A new Cenomanian acanthomorph fish from the El Chango quarry (Chiapas, south-eastern Mexico) and its implications for the early diversification and evolutionary trends of acanthopterygians". Papers in Palaeontology. 7 (3): 1699–1726. Bibcode:2021PPal....7.1699C. doi:10.1002/spp2.1359. S2CID 234805660.
  83. ^ Murray, A. M.; Holmes, R. B. (2021). "A new species of claroteid catfish (Siluriformes: Claroteidae) from the Eocene of Egypt, (Africa) indicates continental differences in tempo of catfish evolution". Journal of Vertebrate Paleontology. 41 (3): e1979021. Bibcode:2021JVPal..41E9021M. doi:10.1080/02724634.2021.1979021. S2CID 239508127.
  84. ^ López-Arbarello, A.; Ebert, M. (2021). "Diversity of chondrostean fish Coccolepis from the Late Jurassic Solnhofen Archipelago, Southern Germany". Acta Palaeontologica Polonica. 66 (4): 837–846. doi:10.4202/app.00873.2021. S2CID 240243638.
  85. ^ a b c d Su, R.; Chang, M.-M.; Chen, G. (2021). "Fossil pharyngeal teeth of grass carp group and their implications for evolution, temporal and spatial distribution pattern, and paleoenvironment". Science China Earth Sciences. 64 (11): 1844–1859. Bibcode:2021ScChD..64.1844S. doi:10.1007/s11430-020-9724-7. S2CID 237245324.
  86. ^ Abu El-Kheir, G. A.; Tantawy, A. A.; Mousa, M. K.; Wahba, D. G. A.; Capasso, L. (2022). "Diastemapycnodus tavernensis gen. et sp. nov. (Actinopterygii, †Pycnodontiformes) from the marine Maastrichtian (Late Cretaceous) of the Dakhla Formation, Western Desert, Egypt". Historical Biology: An International Journal of Paleobiology. 34 (12): 2324–2331. Bibcode:2022HBio...34.2324A. doi:10.1080/08912963.2021.2014482. S2CID 245051336.
  87. ^ Ebert, M. (2021). "A new Ophiopsiformes (Halecomorphi, Neopterygii) from the Upper Jurassic of Nusplingen (Germany) and a comparison of Kimmeridgian Ophiopsiformes from Nusplingen with Tithonian taxa from the Solnhofen Archipelago". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 302 (3): 299–329. doi:10.1127/njgpa/2021/1033. S2CID 245092175.
  88. ^ a b Wick, S. L. (2021). "New early Campanian characiform fishes (Otophysi: Characiformes) from west Texas support a South American origin for known Late Cretaceous characiforms from North America". Cretaceous Research. 128: Article 104993. Bibcode:2021CrRes.12804993W. doi:10.1016/j.cretres.2021.104993.
  89. ^ Ma, X.; Xu, G.; Geng, B. (2021). "Feroxichthys panzhouensis sp. nov., a hump-backed colobodontid (Neopterygii, Actinopterygii) from the early Middle Triassic of Panzhou, Guizhou, China". PeerJ. 9: e11257. doi:10.7717/peerj.11257. PMC 8035898. PMID 33868833.
  90. ^ Taverne, L. (2021). "Les poissons du Santonien (Crétacé supérieur) d'Apricena (Italie du Sud). 9°. Garganomyctophum sorbinii gen. et sp. nov. (Teleostei, Myctophiformes, Myctophidae)" (PDF). Bollettino del Museo Civico di Storia Naturale di Verona. 45: 53–63.
  91. ^ Ebersole, J. A.; Cicimurri, D. J.; Stringer, G. L. (2021). "Marine fishes (Elasmobranchii, Teleostei) from the Glendon Limestone Member of the Byram Formation (Oligocene, Rupelian) at site AWa-9, Washington County, Alabama, USA, including a new species of gobiid (Gobiiformes: Gobiidae)". Acta Geologica Polonica. 71 (4): 481–518. doi:10.24425/agp.2020.134561. S2CID 246440080.
  92. ^ Chen, G.; Chang, M.; Wu, F.; Liao, X. (2021). "Guiclupea superstes, gen. et sp. nov., the youngest ellimmichthyiform (clupeomorph) fish to date from the Oligocene of South China". PeerJ. 9: e11418. doi:10.7717/peerj.11418. PMC 8176909. PMID 34131517.
  93. ^ a b Schwarzhans, W.; Agiadi, K.; Thivaiou, D. (2021). "Teleost otoliths from the Aquitanian (early Miocene) of the Felli section in Greece: the roots of the Mediterranean goby stock (Gobiidae, Gobiiformes)". Rivista Italiana di Paleontologia e Stratigrafia. 127 (3): 485–495. doi:10.13130/2039-4942/16126.
  94. ^ a b c d Reichenbacher, B.; Bannikov, A. F. (2021). "Diversity of gobioid fishes in the late middle Miocene of northern Moldova, Eastern Paratethys – part I: an extinct clade of Lesueurigobius look-alikes". PalZ. 96: 67–112. doi:10.1007/s12542-021-00573-8.
  95. ^ a b c Schultze, H.-P.; Mickle, K. E.; Poplin, C.; Hilton, E. J.; Grande, L., eds. (2021). Actinopterygii I. Palaeoniscimorpha, Stem Neopterygii, Chondrostei. Handbook of Paleoichthyology. Verlag Dr. Friedrich Pfeil. pp. 1–299. ISBN 978-3-89937-272-4.
  96. ^ Přikryl, T. (2021). "Krumvirichthys brzobohatyi gen. et sp. nov. – the oldest record of the deep-sea smelts (Bathylagidae, Argentiniformes)". Rivista Italiana di Paleontologia e Stratigrafia. 127 (3): 585–594. doi:10.13130/2039-4942/16421.
  97. ^ a b c Lin, C.-H.; Chien, C.-W. (2021). "Late Miocene otoliths from northern Taiwan: insights into the rarely known Neogene coastal fish community of the subtropical northwest Pacific". Historical Biology: An International Journal of Paleobiology. 34 (2): 361–382. doi:10.1080/08912963.2021.1916012. S2CID 237802539.
  98. ^ Taverne, L. (2021). "The Pantodontidae (Teleostei, Osteoglossomorpha) from the marine Cenomanian (Upper Cretaceous) of Lebanon. 3°. Palaeopantodon vandersypeni gen. and sp. nov" (PDF). Geo-Eco-Trop. 45 (4): 699–708.
  99. ^ Taverne, L. (2021). "The Pantodontidae (Teleostei, Osteoglossomorpha) from the marine Cenomanian (Upper Cretaceous) of Lebanon. 1°. Pankowskipiscis haqelensis gen. and sp. nov" (PDF). Geo-Eco-Trop. 45 (4): 551–562.
  100. ^ Xu, G. (2021). "The oldest species of Peltoperleidus (Louwoichthyiformes, Neopterygii) from the Middle Triassic (Anisian) of China, with phylogenetic and biogeographic implications". PeerJ. 9: e12225. doi:10.7717/peerj.12225. PMC 8487245. PMID 34703669.
  101. ^ Taverne, L. (2021). "The Pantodontidae (Teleostei, Osteoglossomorpha) from the marine Cenomanian (Upper Cretaceous) of Lebanon. 2°. Petersichthys libanicus gen. and sp. nov" (PDF). Geo-Eco-Trop. 45 (4): 563–571.
  102. ^ Bannikov, A. F. (2021). "A new species of stromateid fish (Perciformes, Stromateoidei) of the genus Pinichthys from the Tarkhanian (lowermost Middle Miocene) of the northwestern Caucasus". Paleontological Journal. 55 (6): 671–677. Bibcode:2021PalJ...55..671B. doi:10.1134/S0031030121060046. S2CID 245009879.
  103. ^ Nazarkin, M. V.; Bannikov, A. F. (2021). "Portentosoceros, the new genus for the Neogene fish Pentaceros sakhaliniсus Gretchina (Perciformes, Percoidei) from the western Pacific and its taxonomic position". Journal of Vertebrate Paleontology. 41 (2): e1928682. Bibcode:2021JVPal..41E8682N. doi:10.1080/02724634.2021.1928682. S2CID 237139110.
  104. ^ Kevrekidis, C.; Arratia, G.; Bacharidis, N.; Reichenbacher, B. (2021). "A new clupeid fish from the upper Miocene of Greece: A possible Hilsa relative from the Mediterranean". Acta Palaeontologica Polonica. 66 (3): 605–621. doi:10.4202/app.00871.2020.
  105. ^ Ren, Y.; Xu, G.-H. (2021). "A new species of Pteronisculus from the Middle Triassic (Anisian) of Luoping, Yunnan, China, and phylogenetic relationships of early actinopterygian fishes". Vertebrata PalAsiatica. 59 (3): 169–199. doi:10.19615/j.cnki.2096-9899.210518. S2CID 238786196.
  106. ^ Yabumoto, Y.; Milàn, M. V. (2021). "A New Miocene Scorpaenoid Fish, Raususetarches sakurai gen. et sp. nov. (Teleostei: Scorpaeniformes) from Rausu, Hokkaido, Japan". Paleontological Research. 25 (2): 93–104. doi:10.2517/2020PR013. ISSN 1342-8144. S2CID 233029541.
  107. ^ Renesto, S.; Magnani, F.; Stockar, R. (2021). "A new species of Saurichthys (Actinopterygii: Saurichtydae) from the Middle Triassic of Monte San Giorgio". Rivista Italiana di Paleontologia e Stratigrafia. 127 (1): 49–71. doi:10.13130/2039-4942/15143.
  108. ^ Stringer, G.; Schwarzhans, W. (2021). "Upper Cretaceous Teleostean Otoliths from the Severn Formation (Maastrichtian) of Maryland, USA, with an Unusual Occurrence of Siluriformes and Beryciformes and the Oldest Atlantic Coast Gadiformes". Cretaceous Research. 125: Article 104867. Bibcode:2021CrRes.12504867S. doi:10.1016/j.cretres.2021.104867.
  109. ^ Stringer, G.; Schwarzhans, W. (2021). "Corrigendum to "Upper Cretaceous teleostean otoliths from the Severn Formation(Maastrichtian) of Maryland, USA, with an unusual occurrence of Siluriformes and Beryciformes and the oldest Atlantic coast Gadiformes"; Cretaceous Research, 125 (2021), 104867, pages 1–29". Cretaceous Research. 128: Article 104939. Bibcode:2021CrRes.12804939S. doi:10.1016/j.cretres.2021.104939. S2CID 237812351.
  110. ^ Liu, J. (2021). "Redescription of 'Amyzon' brevipinne and remarks on North American Eocene catostomids (Cypriniformes: Catostomidae)". Journal of Systematic Palaeontology. 19 (9): 677–689. Bibcode:2021JSPal..19..677L. doi:10.1080/14772019.2021.1968966.
  111. ^ Collareta, A.; Peri, E.; Carnevale, G.; Bosselaers, M.; Bianucci, G. (2021). "On the presence of an ocean sunfish (Tetraodontiformes, Molidae) in the Miocene Pietra Leccese formation of Southern Italy". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 301 (2): 147–155. doi:10.1127/njgpa/2021/1003. S2CID 238694036.
  112. ^ Wilson, C. D.; Mansky, C. F.; Anderson, J. S. (2021). "A platysomid occurrence from the Tournaisian of Nova Scotia". Scientific Reports. 11 (1): Article number 8375. doi:10.1038/s41598-021-87027-y. PMC 8052371. PMID 33863939.
  113. ^ Romano, C. (2021). "A hiatus obscures the early evolution of modern lineages of bony fishes". Frontiers in Earth Science. 8: Article 618853. doi:10.3389/feart.2020.618853. S2CID 231713997.
  114. ^ Argyriou, T.; Davesne, D. (2021). "Offshore marine actinopterygian assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece". PeerJ. 9: e10676. doi:10.7717/peerj.10676. PMC 7825367. PMID 33552722.
  115. ^ Sinha, S.; Brinkman, D. B.; Murray, A. M.; Krause, D. W. (2021). "Late Paleocene fishes of the Ravenscrag Formation, Roche Percée area, southeastern Saskatchewan, Canada". Journal of Vertebrate Paleontology. 41 (3): e1957907. Bibcode:2021JVPal..41E7907S. doi:10.1080/02724634.2021.1957907. S2CID 244383384.
  116. ^ El-Sayed, S.; Friedman, M.; Anan, T.; Faris, M. A.; Sallam, H. (2021). "Diverse marine fish assemblages inhabited the paleotropics during the Paleocene-Eocene thermal maximum". Geology. 49 (8): 993–998. Bibcode:2021Geo....49..993E. doi:10.1130/G48549.1. S2CID 236585231.
  117. ^ Heingård, M.; Sjövall, P.; Sylvestersen, R. L.; Schultz, B. P.; Lindgren, J. (2021). "Crypsis in the pelagic realm: evidence from exceptionally preserved fossil fish larvae from the Eocene Stolleklint Clay of Denmark". Palaeontology. 64 (6): 805–815. Bibcode:2021Palgy..64..805H. doi:10.1111/pala.12574.
  118. ^ Hilton, E. J.; Kovalchuk, O.; Podoplelova, N. (2021). "Sturgeons (Acipenseridae) from the Late Miocene of Ukraine, with a discussion of materials associated with Widhalm's (1886) nomen nudum, †Acipenser euhuso". Zootaxa. 5057 (3): 85–101. doi:10.11646/zootaxa.5057.3.4. PMID 34811203. S2CID 239555590.
  119. ^ Cawley, J. J.; Marramà, G.; Carnevale, G.; Villafaña, J. A.; López-Romero, F. A.; Kriwet, J. (2021). "Rise and fall of †Pycnodontiformes: Diversity, competition and extinction of a successful fish clade". Ecology and Evolution. 11 (4): 1769–1796. Bibcode:2021EcoEv..11.1769C. doi:10.1002/ece3.7168. PMC 7882952. PMID 33614003.
  120. ^ Collins, S. E.; Underwood, C. J. (2021). "Unique damage-related, gap-filling tooth replacement in pycnodont fishes" (PDF). Palaeontology. 64 (4): 489–504. doi:10.1111/pala.12539. S2CID 235585520.
  121. ^ Meunier, F. J.; Alvarado-Ortega, J.; Machado, L. P. C.; Brito, P. M. (2021). "The paleohistology of bone and teeth in Cretaceous Pycnodontidae (Neopterygii: Pycnodontiformes): the case of Neoproscinetes penalvai and Tepexichthys aranguthyorum". Cybium. 45 (3): 193–203. doi:10.26028/cybium/2021-453-003.
  122. ^ Arratia, G.; Schultze, H.-P.; Gouiric-Cavalli, S.; Quezada-Romegialli, C. (2021). "The intriguing † Atacamichthys fish from the Middle Jurassic of Chile – an amiiform or a teleosteomorph?". In Pradel, A.; Denton, J. S. S.; Janvier, P. (eds.). Ancient Fishes and their Living Relatives: a Tribute to John G. Maisey. Munich, Germany: Verlag Dr. Friedrich Pfeil. pp. 19–36. ISBN 978-3-89937-269-4.
  123. ^ Bean, L. (2021). "Revision of the Mesozoic freshwater fish clade Archaeomaenidae". Alcheringa: An Australasian Journal of Palaeontology. 45 (2): 217–259. Bibcode:2021Alch...45..217B. doi:10.1080/03115518.2021.1937700. S2CID 237518065.
  124. ^ Davesne, D.; Friedman, M.; Schmitt, A. D.; Fernandez, V.; Carnevale, G.; Ahlberg, P. E.; Sanchez, S.; Benson, R. B. J. (2021). "Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication". Proceedings of the National Academy of Sciences of the United States of America. 118 (30): e2101780118. Bibcode:2021PNAS..11801780D. doi:10.1073/pnas.2101780118. PMC 8325350. PMID 34301898. S2CID 236213444.
  125. ^ Ostrowski, S. A. (2021). "Late Cretaceous Elopomorpha (Actinopterygii: Teleostei) from the Mahajanga Basin of Madagascar and impacts on paleobiogeography". Palaeontologia Electronica. 24 (3): Article number 24.3.a31. doi:10.26879/1151.
  126. ^ Schwarzhans, W.; Carnevale, G. (2021). "The rise to dominance of lanternfishes (Teleostei: Myctophidae) in the oceanic ecosystems: a paleontological perspective". Paleobiology. 47 (3): 446–463. Bibcode:2021Pbio...47..446S. doi:10.1017/pab.2021.2. ISSN 0094-8373. S2CID 233678539.
  127. ^ Armbruster, J. W.; Lujan, N. K. (2021). "Identification of the Oligocene to early Miocene loricariid catfish †Taubateia paraiba as a member of the Rhinelepinae". Journal of Paleontology. 96 (3): 729–733. doi:10.1017/jpa.2021.111. S2CID 245579893.
  128. ^ Wang, Z.; Jiang, X.; Wang, X.; Gao, J.; Zhu, S. (2021). "Tooth Plates of Ceratodus (Dipnoi, Ceratodontidae) from the Upper Jurassic Shaximiao Formation of Guang'an, Sichuan Province, China". Acta Geologica Sinica (English Edition). 96 (3): 766–775. doi:10.1111/1755-6724.14774. S2CID 237853795.
  129. ^ Downs, J. P.; Barbosa, J.; Daeschler, E. B. (2021). "A new species of Eusthenodon (Sarcopterygii, Tristichopteridae) from the Upper Devonian (Famennian) of Pennsylvania, U.S.A., and a review of Eusthenodon taxonomy". Journal of Vertebrate Paleontology. 41 (3): e1976197. Bibcode:2021JVPal..41E6197D. doi:10.1080/02724634.2021.1976197. S2CID 240453731.
  130. ^ Renesto, S.; Magnani, F.; Stockar, R. (2021). "A new coelacanth specimen with elongate ribs from the Middle Triassic (Ladinian) Kalkschieferzone of Monte San Giorgio (Canton Ticino, Switzerland)". Rivista Italiana di Paleontologia e Stratigrafia. 127 (3): 689–700. doi:10.13130/2039-4942/16731.
  131. ^ Hartung, J.; Sander, P. M.; Friedman, M.; Wintrich, T. (2021). "First record of mawsoniid coelacanths (Actinistia, Sarcopterygii) from the marine Rhaetian (Upper Triassic) of Bonenburg, Germany". Journal of Vertebrate Paleontology. 41 (2): e1931258. Bibcode:2021JVPal..41E1258H. doi:10.1080/02724634.2021.1931258. S2CID 237517969.
  132. ^ Cavin, L.; Toriño, P.; Van Vranken, N.; Carter, B.; Polcyn, M. J.; Winkler, D. (2021). "The first Late Cretaceous mawsoniid coelacanth (Sarcopterygii: Actinistia) from North America: Evidence of a lineage of extinct 'living fossils'". PLOS ONE. 16 (11): e0259292. Bibcode:2021PLoSO..1659292C. doi:10.1371/journal.pone.0259292. PMC 8584698. PMID 34762682.
  133. ^ Brito, P. M.; Martill, D. M.; Eaves, I.; Smith, R.; Cooper, S. L. A. (2021). "A marine Late Cretaceous (Maastrichtian) coelacanth from North Africa". Cretaceous Research. 122: Article 104768. Bibcode:2021CrRes.12204768B. doi:10.1016/j.cretres.2021.104768. S2CID 233551515.
  134. ^ Lemberg, J. B.; Daeschler, E. B.; Shubin, N. H. (2021). "The feeding system of Tiktaalik roseae: an intermediate between suction feeding and biting". Proceedings of the National Academy of Sciences of the United States of America. 118 (7): e2016421118. Bibcode:2021PNAS..11816421L. doi:10.1073/pnas.2016421118. PMC 7896305. PMID 33526593.
  135. ^ Toriño, P.; Soto, M.; Perea, D. (2021). "A comprehensive phylogenetic analysis of coelacanth fishes (Sarcopterygii, Actinistia) with comments on the composition of the Mawsoniidae and Latimeriidae: evaluating old and new methodological challenges and constraints". Historical Biology: An International Journal of Paleobiology. 33 (12): 3423–3443. Bibcode:2021HBio...33.3423T. doi:10.1080/08912963.2020.1867982. S2CID 233942585.
  136. ^ Mondéjar-Fernández, J.; Meunier, F. J.; Cloutier, R.; Clément, G.; Laurin, M. (2021). "A microanatomical and histological study of the scales of the Devonian sarcopterygian Miguashaia bureaui and the evolution of the squamation in coelacanths". Journal of Anatomy. 239 (2): 451–478. doi:10.1111/joa.13428. PMC 8273612. PMID 33748974.
  137. ^ Cavin, L.; Piuz, A.; Ferrante, C.; Guinot, G. (2021). "Giant Mesozoic coelacanths (Osteichthyes, Actinistia) reveal high body size disparity decoupled from taxic diversity". Scientific Reports. 11 (1): Article number 11812. Bibcode:2021NatSR..1111812C. doi:10.1038/s41598-021-90962-5. PMC 8175595. PMID 34083600.
  138. ^ King, B.; Marone, F.; Rücklin, M. (2021). "Tooth development in the Early Devonian sarcopterygian Powichthys and the evolution of the crown osteichthyan dentition". Palaeontology. 64 (5): 645–659. Bibcode:2021Palgy..64..645K. doi:10.1111/pala.12563.
  139. ^ Clement, A. M.; Cloutier, R.; Lu, J.; Perilli, E.; Maksimenko, A.; Long, J. (2021). "A fresh look at Cladarosymblema narrienense, a tetrapodomorph fish (Sarcopterygii: Megalichthyidae) from the Carboniferous of Australia, illuminated via X-ray tomography". PeerJ. 9: e12597. doi:10.7717/peerj.12597. PMC 8667741. PMID 34966593.
  140. ^ Haridy, Y.; Osenberg, M.; Hilger, A.; Manke, I.; Davesne, D.; Witzmann, F. (2021). "Bone metabolism and evolutionary origin of osteocytes: Novel application of FIB-SEM tomography". Science Advances. 7 (14): eabb9113. Bibcode:2021SciA....7.9113H. doi:10.1126/sciadv.abb9113. PMC 8011976. PMID 33789889.
  141. ^ Peecook, B. R.; Bronson, A. W.; Otoo, B. K. A.; Sidor, C. A. (2021). "Freshwater fish faunas from two Permian rift valleys of Zambia, novel additions to the ichthyofauna of southern Pangea". Journal of African Earth Sciences. 183: Article 104325. Bibcode:2021JAfES.18304325P. doi:10.1016/j.jafrearsci.2021.104325.
  142. ^ Ballen, G. A.; Jaramillo, C.; Dagosta, F. C. P.; de Pinna, M. C. C. (2021). "A fossil fish assemblage from the middle Miocene of the Cocinetas Basin, northern Colombia". Papers in Palaeontology. 8. doi:10.1002/spp2.1405. S2CID 244439921.

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!