بت كمومي

كيُوبِت (/ˈkjuːbɪt/) أو بِت كمومي (بالإنجليزية qubit أو qbit) في الحوسبة الكمومية، هي وحدة المعلومات الكمومية، وهو المقابل الكمومي للبِت الكلاسيكي. الكيوبت هو نظام كمي ثنائي الحالة مثل استقطاب الفوتون: هنا الحالتين هما استقطاب عمودي واستقطاب أفقي. في الأنظمة الكلاسيكية، لا يمكن للبت أن يأخد إلا حالة واحدة فقط من بين حالتين. في حين تسمح ميكانيك الكم للكيوبت أن يأخد حالة تراكب لكلا الحالتين في نفس اللحظة وهذه هي الخاصية الأساسية في الحوسبة الكمومية.

أصل المفهوم والتسمية

مهد ستيفن ويزنر لتصور البت الكمومي بغير معرفة مسبقة في 1983 في اقتراحه لل quantum money الذي كان قد حاول نشره لأكثر من عقد.[1][2]

يعود مصطلح «كوبيت»  إلى بنيامين شوماخر.[3] في اقرارات من ورقته البحثية، يقول شوماخر أن مصطلح «كيوبت» اخترع عن طريق الدعابة فقط بسبب التشابه الصوتي مع كلمة "cubit" (التي هي وحدة قديمة لقياس الطول) أثناء محادثة مع وليام ووترز. توضح الورقة طريقة ضغط حالات مصدر معلومات كمومي لاستخدام أقل ما يمكن من الموارد المادية للتخزين. وتعرف هذه العملية الآن باسم ضغط شومخر.

مقارنة بين البت والبت الكمومي

البت هو أصغر وحدة ناقلة، أو حاملة للمعلومات. ويستعمل لمعالجة المعلومات عبر الحواسب.  بغض النظر عن البنية الفيزيائية لتخزين البت، لدى هذا الأخير حالتين تمثل عادة ب 0 أو 1 لكن يمكن أن يُمثل حسب التطبيق بشكل عام، مثلا «صحيح» أو «خطأ» أو أي اختيارين متعارضين. مثلا يمكن اعتبار حالة مفتاح المصباح ك 1 عند التشغيل و0 عند الإطفاء.

يتشابه الكيوبت في بعض النقط مع البت التقليدي، لكنه بشكل عام يختلف كثيرا عنه. هناك نتيجتين محتملة لقياس كيوبت، عادة 0 و1،  مثل البت. لكن الفرق هو أنه في حين أن حالة بت يمكن أن تكون إما 0 أو 1، حالة الكيوبت يمكن أيضا أن تكون كتراكب لكلا الحالتين.[4] من الممكن ترميز بت واحد في كوبيت واحد. في حين، كوبيت يمكن أن يخزن معلومات أكثر، على سبيل المثال يصل إلى اثنين من البت باستخدام تشفير superdense coding.

يمكن وصف كامل لحالة نظام مكون من n مكونات، في الفيزياء الكلاسيكية يتطلب ذلك فقط n بت، بينما في فيزياء الكم يتطلب  2n−1 من الأعداد المركبة.[5]

التمثيل

 تعرف الحالتين الإثنين التي يمكن أن يقاس عليها الكيوبت بحالات القاعدة (أو متجهات القاعدة). كما جرت العادة مع أي نوع من الحالات الكمية، فهي تمثل بواسطة تمثيل ديراك—أو «رمز براكيت». يعني أن حالتي القاعدة تكتب، اصطلاحا،  كالتالي: و (تُلفظ "ket 0" و"ket 1").

حالات الكيوبت

كرة بلوخ لتمثيل الكيوبت. سعة الإحتمالات في النص معطية بـ و

حالة الكيوبت الصرف هي عبارة عن تراكب خطي لحالة القاعدة. وهذا يعني أن الكيوبت يمكن أن يمثل كتركيبة خطية من و :

حيث α وβ هي سعات الإحتمالات ويمكن بشكل عام أن تكون أعداد مركبة.

عندما نقيس البت الكمومي في ال standard basis ، احتمال النتيجة هو واحتمال النتيجة هو . لأن مربعات المعيار تعطي الاحتمالات، ويترتب على ذلك العلاقة التالية التي تقيد قيم ألفا وبيتا:  

كرة بلوخ

يبدو للوهلة الأولى أنه يجب أن تكون هناك أربع درجات من الحرية، و أعداد مركبة مع درجتين من الحرية لكل منهما. ومع ذلك، فإن درجة واحدة من الحرية يتم إزالتها بسبب القيد |α|2 + |β|2 = 1, التي يمكن أن تعتبر على أنها معادلة 3-sphere مضمنة في 4-الأبعاد المكانية بقطر 1. هذا يعني مع تغيير مناسب للإحداثيات، أن واحدة يمكن أن تحذف واحدة من درجات الحرية. خيار ممكن هو  إحداثيات Hopf :

بالإضافة إلى ذلك، الطور  ei ψ للكيوبت الواحد، لا يحمل أي نتائج فيزيائية ملحوظة، لذا يمكننا، اعتباطيا، اختيار α كعدد حقيقي (أو β في حال α

صفر)، وترك درجتين من الحرية فقط:

ممكن أن نعاين الحالات الممكنة للكيوبت الواحد باستخدام كرة بلوخ (انظر الرسم). ممثلة في فلكة، البت التقليدي يمكن أن يكون فقط في «القطب الشمالي» أو «القطب الجنوبي» في مواقع و على التوالي. بقية سطح الكرة غير متاح للبت الكلاسيكي، ولكن حالة الكيوبت الصرف يمكن أن تُمثل كأي نقطة على سطح الكرة. على سبيل المثال، حالة الكيوبت سوف تقع على خط استواء الكرة، على الجزء الموجب للمحور y.

سطح الكرة هو الفضاء ثنائي الأبعاد الذي يمثل حالة الفضاء لحالات للكيوبت الصرف. حيث لها  درجتين من الحرية.

من الممكن وضع البت الكمومي في حالة كمومية مختلطة أو حالة ممزوجة، مزيج إحصائي من حالات محضة مختلفة. ويمكن أن تمثل الحالات المختلطة بنقط تقع داخل كرة بلوخ. للحالة المختلطة ثلاث درجات حرية: الزوايا و وكذلك الطول للمتجه الذي يمثل هذه الحالة.

العمليات على حالات البت الكمومي الصرف

هناك أنواع مختلفة من العمليات التي يمكن القيام بها على حالات الكيوبت الصرف.

  •  البوابة المنطفية الكمومية يمكنها أن تأثر على كوبيت: رياضيا، يخضع الكيوبت لتحويل واحدي. تمثل التحويلات الواحدية دوران متجه الكيوبت في كرة بلوخ.
  • قياس القاعدة المعيارية هي العملية التي من خلالها تُجلب المعلومات عن حالة الكيوبت. نتيجة القياس تكون إما مع احتمال أو مع احتمال . قياس حالة كيوبت يغير قيم α وβ. فعلى سبيل المثال، إذا كانت نتيجة القياس ، يتم تغيير α إلى 1 و  β إلى 0. علما أن قياس حالة الكيوبت متشابكة مع نظام كمي آخر يحول حالة صرفة إلى حالة مختلطة.

التشابك

من بين الفروقات الهامة بين البت الكمومي والبت الكلاسيكي هو أنه بإمكان عدة كيوبتات أن تبدي تشابك كمي. التشابك هو خاصية غير محلية التي تتيح مجموعة من الكيوبت أن تبدي أعلى ارتباط مما هو ممكن في النظم الكلاسيكية. خذ على سبيل المثال، كيوبتين متشابكين في حالة بيل

في هذه الحالة المسماة تراكب متساوي، هناك تساوي احتمالات قياس إما أو ، .

تخيل كيوبتين متشابكين يتم اعطاء كل واحد لكل من أحمد ومحمد. أحمد ينجز قياس للكيوبت الخاص به،  يحصل على—مع تساوي الاحتمالات—إما أو. بسبب تشابك الكيوبتين يجب أن يحصل محمد بالضبط على نفس قياس أحمد; أي إذا قاس أحمد 0 . القياس نفسه، هي الحالة الوحيدة حيث كيوبت أحمد هو.  يتيح التشابك أيضا عدة حالات (مثل حالة بيل المذكورة أعلاه) أن تتخذ في وقت واحد، على عكس البتات الكلاسيكية التي لا يمكن أن يكون لها سوى قيمة واحدة في كل مرة. التشابك هو عنصر ضروري للحوسبة الكمية الذي لا يمكن القيام به بكفاءة على الكمبيوتر الكلاسيكي. العديد من نجاحات الاتصال والحوسبة الكمية، مثل quantum teleportation والترميز superdense coding ، تستفيد من التشابك، مما يشير إلى أن التشابك هو المورد الفريد من نوعه لدى الحوسبة الكمية.

المسجل الكمي

عدد من البتات الكمية مجتمعة معا هو مسجل كمي. أجهزة الكمبيوتر الكمومية تجري العمليات الحسابية عن طريق التلاعب بالكيوبتات ضمن سجل. ال qubyte (البايت الكمي) هو عبارة عن مجموعة من ثمانية كيوبت.[6]

تنوعات الكيوبت

على غرار الكيوبت، qutrit هي وحدة الكم من المعلومات في نظام كمي 3-مستوى. هذا مماثل للوحدة الكلاسيكية للمعلومات trit. ومصطلح "qudit" يستخدم للدلالة على وحدة المعلومات الكمية في النظم  d-level الكمية.

التمثيل الفيزيائي

 يمكن أن يُستخدم أي نظام 2-مستوى كبت كمومي. يمكن أن تستخدم أيضا الأنظمة متعددة المستويات، إذا كان لديها حالتين منفصلتين بفعالية عن البقية. هناك العديد من المقترحات. عدة تطبيقات فيزيائية التي تقارب أنظمة 2-مستوى للأنظمة بدرجات مختلفة التي تحققت بنجاح. وكما هو الحال بالنسبة للبت الكلاسيكي حيث أن حالة الترانزيستور، حالة مغنطة سطح القرص الصلب، ووجود تيار في سلك كهربائي من عدمه، كلها تمثل البتات في نفس الكمبيوتر، من المرجح أن يستخدم الحاسب الكمي النهائي، تركيبات مختلفة من الكيوبتات في تصميمه.

هنا قائمة غير مكتملة من تطبيقات فيزيائية للبتات الكمومية، واختيارات القاعدة تمت بالاصطلاح فقط.

Physical support Name Information support
Photon Polarization encoding Polarization of light Horizontal Vertical
Number of photons Fock state Vacuum Single photon state
Time-bin encoding Time of arrival Early Late
Coherent state of light Squeezed light Quadrature Amplitude-squeezed state Phase-squeezed state
Electrons Electronic spin Spin Up Down
Electron number Charge No electron One electron
Nucleus Nuclear spin addressed through NMR Spin Up Down
Optical lattices Atomic spin Spin Up Down
Josephson junction Superconducting charge qubit Charge Uncharged superconducting island (Q=0) Charged superconducting island (Q=2e, one extra Cooper pair)
Superconducting flux qubit Current Clockwise current Counterclockwise current
Superconducting phase qubit Energy Ground state First excited state
Singly charged quantum dot pair Electron localization Charge Electron on left dot Electron on right dot
Quantum dot Dot spin Spin Down Up

تخزين الكيوبت

في ورقة بعنوان: "Solid-state quantum memory using the 31P nuclear spin"، التي نشرت في تشرين الأول / أكتوبر 23, 2008 من مجلة  الطبيعة،[7] قام فريق من العلماء من المملكة المتحدة والولايات المتحدة عن أول نقل طويل وثابت نسبيا (1.75 ثانية) لحالة تراكب في لف إلكترون «معالجة» كيوبت إلى لف نووي «ذاكرة» كوبيت. هذا الحدث يمكن اعتباره نسبيا أول تخزين ثابت للمعلوومات الكمية، خطوة حيوية نحو تطوير الحوسبة الكمومية. مؤخرا تم تعديل أنظمة مماثلة (باستخدام مكونات مشحونة بدلا من محايدة) وهذا مدد بشكل كبير هذه المدة  إلى 3 ساعات في درجات حرارة منخفضة جدا و39 دقيقة في درجة حرارة الغرفة.[8] إعداد Qbit على أساس لف الإلكترون بدلا من لف النوية كان قد أثبت أيضا من قبل فريق من العلماء من سويسرا وأستراليا.[9]

انظر أيضا

مراجع

  1. ^ S. Weisner (1983). "Conjugate coding". رابطة مكائن الحوسبة، Special Interest Group in Algorithms and Computation Theory. ج. 15: 78–88.
  2. ^ A. Zelinger, Dance of the Photons: From Einstein to Quantum Teleportation, Farrar, Straus & Giroux, New York, 2010, pp. 189, 192, ISBN 0-374-23966-5
  3. ^ B. Schumacher (1995). "Quantum coding". Physical Review A. ج. 51 ع. 4: 2738–2747. Bibcode:1995PhRvA..51.2738S. DOI:10.1103/PhysRevA.51.2738.
  4. ^ Nielsen، Michael A.؛ Chuang، Isaac L. (2010). Quantum Computation and Quantum Information. مطبعة جامعة كامبريدج. ص. 13. ISBN:978-1-107-00217-3.
  5. ^ Shor، Peter (1996). "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer∗". arXiv:quant-ph/9508027. {{استشهاد بدورية محكمة}}: الاستشهاد بدورية محكمة يطلب |دورية محكمة= (مساعدة)
  6. ^ R. Tanburn؛ E. Okada؛ N. S. Dattani (2015). "Reducing multi-qubit interactions in adiabatic quantum computation without adding auxiliary qubits. Part 1: The "deduc-reduc" method and its application to quantum factorization of numbers". arXiv:1508.04816. مؤرشف من الأصل في 2021-03-08. {{استشهاد بدورية محكمة}}: الاستشهاد بدورية محكمة يطلب |دورية محكمة= (مساعدة)
  7. ^ J. J. L. Morton؛ وآخرون (2008). "Solid-state quantum memory using the 31P nuclear spin". Nature. ج. 455 ع. 7216: 1085–1088. arXiv:0803.2021. Bibcode:2008Natur.455.1085M. DOI:10.1038/nature07295.
  8. ^ Kamyar Saeedi؛ وآخرون (2013). "Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28". Science. ج. 342 ع. 6160: 830–833. Bibcode:2013Sci...342..830S. DOI:10.1126/science.1239584.
  9. ^ Náfrádi، Bálint؛ Choucair، Mohammad؛ Dinse، Klaus-Pete؛ Forró، László (18 يوليو 2016). "Room temperature manipulation of long lifetime spins in metallic-like carbon nanospheres". Nature Communications. ج. 7: 12232. DOI:10.1038/ncomms12232. مؤرشف من الأصل في 2019-12-13.

وصلات خارجية

  • Qubit.org تم تأسيسه من قبل إحدى الشركات الرائدة في الحوسبة الكمية، ديفيد الألمانية

Read other articles:

حزب العمال الديمقراطى البلد مصر  تاريخ التأسيس 2011  المقر الرئيسى مصر  انحياز سياسى يساريه  تعديل  حزب العمال الديموقراطي فى مصر، هو حزب سياسى اشتراكي يساري ظهر الحزب فى مصر بعد ثورة 25 يناير بيركز الحزب نشاطه فى دعم النقابات المهنية واتحاد نقابة العمال. لينكات بر

 

Head of the Catholic Church from 283 to 296 Pope SaintCaiusBishop of RomeChurchEarly ChristianityPapacy began17 December 283Papacy ended22 April 296PredecessorEutychianSuccessorMarcellinusPersonal detailsBornCaius or GaiusUnknownRoman DalmatiaDied22 April 296Rome, Western Roman EmpireSainthoodFeast day22 April Pope Caius (died 22 April 296),[1] also called Gaius, was the bishop of Rome from 17 December 283 to his death in 296.[2] Little information on Caius is available except...

 

Cet article est une ébauche concernant un album. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Rockferry Album de Duffy Sortie 3 mars 2008(voir date de sortie) Enregistré 2004 - 2007 Durée 37:50 Genre Soul, pop Réalisateur Steve Booker, Bernard Butler Label A&M RecordsMercuryPolydorRough TradeUniversal Albums de Duffy Endlessly(2010)modifier Rockferry Compilation des critiques PériodiqueNote ...

У Вікіпедії є статті про інших людей з таким ім'ям: Спиридон. Архієпископ Спиридон (Головастов) архієпископ Спиридон (Головастов) Архієпископ Добропільський, вікарій Горлівської єпархії з 25 травня 2018 Церква: Російська православна церква (Московський патріархат) Попер...

 

Film directed by Paul Landres Chain of EvidenceDirected byPaul LandresWritten byElwood UllmanProduced byBen SchwalbStarringBill Elliott Jimmy Lydon Don HaggertyCinematographyHarry NeumannEdited byNeil BrunnenkantMusic byMarlin SkilesProductioncompanyAllied ArtistsDistributed byAllied ArtistsRelease dateJanuary 6, 1957Running time64 minutesCountryUnited StatesLanguageEnglish Chain of Evidence is a 1957 American film noir crime film directed by Paul Landres and starring Bill Elliott, Jimmy Lydo...

 

Roelof BothaRoelof Botha, September 2010Lahir19 September 1973 (1973-09-19) (usia 50)[1]Pretoria, Afrika SelatanAlmamaterUniversitas Cape TownStanford Graduate School of BusinessPekerjaanPemodal usahaDikenal atasCFO PayPal Roelof F. Botha[2] (lahir 19 September 1973[1]) adalah pemodal usaha Afrika Selatan. Botha merupakan mitra pemodal di Sequoia Capital dan saat ini menjabat anggota dewan Jawbone, Eventbrite, Evernote, Mahalo, Natera, Nimbula, Square, Tokbox, Tum...

United States historic placeIowa Soldiers' Orphans' HomeU.S. National Register of Historic PlacesU.S. Historic districtDavenport Register of Historic Properties No. 17/37[2] The main building at the HomeLocation within cityLocation2800 Eastern Ave.Davenport, IowaCoordinates41°32′49.74″N 90°33′11.17″W / 41.5471500°N 90.5531028°W / 41.5471500; -90.5531028Area31.9 acres (12.9 ha)Built1865ArchitectJohn W. RossH.F. LiebbeJ. Bradley RustArc...

 

Official government emblem of the U.S. state of Washington Great Seal of the State of WashingtonArmigerState of WashingtonAdopted1889Earlier version(s) The Seal of the State of Washington contains a portrait of George Washington, the first president of the United States, as painted by Gilbert Stuart. The outer ring contains the text The Seal of the State of Washington and 1889, the year Washington state was admitted to the Union. The seal is featured as the main element on both sides of the f...

 

Para otros artículos sobre este tema, véase Linfoma. Linfoma no hodgkiniano Micrografía de un linfoma de células de manto (tipo de linfoma no hodgkiniano) en una biopsia de íleo terminal, tinción H&E.Especialidad hematologíaoncología[editar datos en Wikidata] El linfoma no hodgkiniano o linfoma no Hodgkin es un conjunto de enfermedades del sistema linfático que incluye todos los linfomas con excepción del linfoma de Hodgkin. Es un tipo de cáncer que afecta a los linfo...

Culture of the Inuit in the Arctic and Subarctic region This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (June 2021) (Learn how and when to remove this template message) This article may be...

 

Парламентська Скупщина Боснії і Герцеговинибосн. Parlamentarna skupština Bosne i Hercegovine   Загальна інформація: Юрисдикція:  Боснія і Герцеговина Тип: двопалатний парламент Палати: Палата народівПалата представників Палата народів Боснії і Герцеговини: Депутатів: 57 (15+42) Палата пр...

 

Серия телесериала «Легенда о Корре»Затаившийся врагангл. The Terror Within Банда Захира похитила Корру Основная информация Номер серии Сезон 3Серия 8 Режиссёр Колин Хек Автор сценария Джошуа Хэмилтон Дата выхода 25 июля 2014 Длительность 22 минуты Приглашённые актёры Джоу...

American game designer For other people named Andrew Keith, see Andrew Keith (disambiguation). J. Andrew KeithAndrew KeithBorn(1958-08-31)August 31, 1958DiedAugust 7, 1999(1999-08-07) (aged 40)[1]Resting placeSaint Clair Cemetery (Greensburg, Pennsylvania)NationalityAmericanOccupationGame designer John Andrew Keith (August 31, 1958 – August 7, 1999)[2] was an American author and games developer. Career J. Andrew Keith, and his brother William H. Keith Jr., responded to ...

 

2022 American filmRiseRelease posterDirected byAkin OmotosoWritten byArash AmelProduced byBernie GoldmannStarring Uche Agada Ral Agada Jaden Osimuwa Elijah Shomanke Yetide Badaki Dayo Okeniyi CinematographyKabelo ThatheEdited byVuyani SondloMusic byRé OlunugaProductioncompanies Walt Disney Pictures Faliro House Productions Distributed byDisney+Release date June 24, 2022 (2022-06-24) Running time111 minutesCountriesUnited StatesGreeceLanguagesEnglishGreek For the French comedy ...

 

Species of shark Spot-tail shark Conservation status Near Threatened (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Chondrichthyes Subclass: Elasmobranchii Subdivision: Selachimorpha Order: Carcharhiniformes Family: Carcharhinidae Genus: Carcharhinus Species: C. sorrah Binomial name Carcharhinus sorrah(J. P. Müller & Henle, 1839)[2] Range of the spot-tail shark Synonyms[2] Carcharhinus bleekeri (Dumér...

Теоретическая и математическая физикаангл. Theoretical and Mathematical Physics Країна видання  РосіяПеріодичність виходу 1 місяцьМова російська і англійськаАдреса редакції 119991, м. Москва, вул. Губкіна, 8, кімн. 219Редактор Andrei SlavnovdВидавець Російська академія наук і Springer Science...

 

センターのポジション例 センター(C)は、アメリカンフットボール、カナディアンフットボールで、攻撃ラインの中心に位置するポジションである。センターが他の選手(主にクォーターバック)にボールを渡すことにより(スナップという)、プレーが開始される。 役割 センターの役割としてまず挙げられるのは、プレー開始時のクォーターバックへのボールの受...

 

アンドラCF(英語版)とは異なります。 FCアンドラ原語表記 Futbol Club Andorra愛称 Els Tricolorsクラブカラー     青・    黄・    赤創設年 1942年所属リーグ セグンダ・ディビシオン所属ディビジョン 2部(2022-23)ホームタウン アンドラ・ラ・ベリャホームスタジアム エスタディ・ナシオナル収容人数 3,306代表者 ジェラール・ピケ (90%) グルー...

Ninth season of the K League 2, the second tier South Korean professional league Football league seasonHana 1QK League 2Season2021Dates27 February – 31 October 2021[1]ChampionsGimcheon Sangmu (1st title)PromotedGimcheon SangmuChampions LeagueJeonnam Dragons (via Korean FA Cup)Matches played180Goals scored435 (2.42 per match)Best PlayerAn Byong-junTop goalscorerAn Byong-jun (23 goals)← 2020 2022 → The 2021 K League 2 was the ninth season of the K League 2, the second-tier So...

 

Cewekku JutekPembuatPrima EntertainmentPemeranAgnes MonicaRoger DanuartaPoppy MarethaMaurice NovoaIvanka SuwandiCitra KharismaLidya PratiwiLagu pembukaIndah oleh Agnes MonicaLagu penutupIndah oleh Agnes MonicaNegara asalIndonesiaAustraliaJmlh. episode28ProduksiProduserG. SulaimanLokasi produksiJakartaMelbourneDandenong RangesPort Campbell National ParkBallaratDurasi1 JamRilis asliJaringanRCTIFormat audioStereoDolby Digital 5.1Rilis25 Mei (2003-05-25) –30 November 2003 (2003-...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!