Шакир Измайлов

Шакир Измайлов
Туган 1897
Сембер, Сембер губернасы, Россия империясе
Үлгән 15 декабрь 1937(1937-12-15)
Мәскәү, СССР
Күмү урыны «Коммунарка» ату полигоны[d]
Яшәгән урын Леонти тыкрыгы[d], Мәскәү[1]

Шакир Измайлов (Шакир Сафиулла улы Измайлов, 1897, Сембер, Сембер губернасы, Россия империясе15 декабрь 1937(1937-12-15), Мәскәү, СССР) — сәясәт эшлеклесе, дипломат. 1917 елдан армиядә, Самара шәһәрендә совет хакимиятен урнаштыруда катнашкан. РКП(б)нең Самара ГК каршындагы мөселман секциясе сәркатибе (1918), ЭККА Көнчыгыш фронты гаскәрләрен формалаштыру, комплектлау һәм өйрәтү идарәсенең сәяси бүлегендә (1919), Сембер губерна татар совет-партия мәктәбе укытучысы (1921), БКП(б) ҮК каршындагы Татар-башкорт бюросы сәркатибе (1922-1924), ТАССР хезмәт халык комиссары, ТАССР ҮБК әгъзасы (1925-1929), ҺББҮШ инструкторы (1929). 1930 елдан дипломат эшендә: СССРның Согуд Гарәпстанындагы вәкиллегенең беренче сәркәтибе, СССР Тышкы эшләр халык комиссариатының 1 нче Көнчыгыш бүлегенең җаваплы референты, шуннан соң АзССРда СССР Тышкы эшләр халык комиссариатының вәкаләтле вазыйфаларын башкаручысы (?-1937).

1937 елның 15 синтбрендә куга алынган. «Инкыйлабка каршы милләтчел баш күтәрүчеләр оешмасы әгъзасы булу»да гаепләнеп үлем җәзасына хөкем ителгән. 1956 елда акланган.[2]

Искәрмәләр

Read other articles:

Inalienable rights guaranteed to People in India by its Constitution The Fundamental Rights in India enshrined in part III (Article 12-35) of the Constitution of India guarantee civil liberties such that all Indians can lead their lives in peace and harmony as citizens of India.[1] These rights are known as fundamental as they are the most essential for all-round development i.e., material, intellectual, moral and spiritual and protected by fundamental law of the land i.e. constitutio...

 

Untuk kegunaan lain, lihat Aceh (disambiguasi). Koordinat: 5°22′N 95°30′E / 5.367°N 95.500°E / 5.367; 95.500 Kabupaten Aceh BesarKabupatenTranskripsi bahasa daerah • Jawoëاچيه راييك • Alfabet AcehAcèh Rayek LambangMotto: Putoh ngon mufakat, kuwat ngon meuseuraya(Aceh) Suatu keputusan berlandaskan mufakat dan persatuan selalu di jaga dengan sebaik-baiknyaPetaKabupaten Aceh BesarPetaTampilkan peta SumatraKabupaten Aceh...

 

German tennis player For other people named Martina Müller, see Martina Müller (disambiguation). Martina MüllerCountry (sports) GermanyResidenceSehndeBorn (1982-10-11) 11 October 1982 (age 41)Hanover, West GermanyHeight1.65 m (5 ft 5 in)Turned pro1999Retired2011PlaysRight-handed (two-handed backhand)Prize money$1,040,531SinglesCareer record288–255Career titles1 WTA, 10 ITFHighest rankingNo. 33 (2 April 2007)Grand Slam singles resultsAustr...

У Вікіпедії є статті про інших людей з таким ім'ям: Секст Ноній. Секст Ноній КвінтіліанКраїна Стародавній РимДіяльність політик, військовослужбовецьПосада давньоримський сенатор[d] і консулБатько Секст Ноній КвінтіліанМати Sosiad Секст Ноній Квінтіліан (лат. Sextus N...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2018) تيم ماكمولان معلومات شخصية الميلاد سنة 1963 (العمر 59–60 سنة)  لندن  مواطنة المملكة المتحدة  الحياة العملية المدرسة الأم الأكاديمية الملكية للفنون الم

 

Retablo de la Virgen. La Virgen de la Paloma es una advocación mariana de Madrid (España). Sin ser la patrona oficial de dicha villa (lugar que ocupa la Almudena), tradicionalmente se la considera patrona popular de los madrileños,[1]​ y ha gozado de gran devoción. En su honor se celebran anualmente las Fiestas de la Paloma, muy castizas. Se trata de una tradición que data de finales del siglo XVIII. La imagen de la Virgen es un lienzo en lugar de la tradicional talla. El cuad...

Religiões na Argentina (2019)[1]   Catolicismo (62.9%)  Protestantismo (15.3%)  Sem religião (18.9%)  Outras religiões (4%) Religião por país América do NorteCanadá  · Estados Unidos  · México  · Cuba  · Haiti  · República Dominicana  · Trinidad e Tobago  · Nicarágua América do SulArgentina  · Brasil  · Bolív...

 

ITT: The Management of Opportunity First edition coverAuthorRobert SobelCountryUnited StatesLanguageEnglishSubjectBusiness history, ITT CorporationGenreNon-fictionPublisherTimes BooksPublication dateOctober 1982Media typePrintPages421 pp. (hardcover)ISBN0812910281 ITT: The Management of Opportunity is a non-fiction book about ITT Corporation by American business writer and historian Robert Sobel. The book was initially published by Times Books in 1982.[1][2] Contents In t...

 

Exposed impact crater in Libya BP StructureGebel DalmaLandsat image of the BP structure; screen capture from NASA World WindImpact crater/structureConfidenceConfirmedDiameter2 kilometres (1.2 mi)Age<120 MaExposedYesDrilledNoLocationCountryLibya Oblique Landsat image of BP crater draped over digital elevation model (x5 vertical exaggeration); screen capture from NASA World WindThe BP Structure, also known as Gebel Dalma, is an exposed impact crater in Libya. It is so called because it ...

Camille MarboCamille Marbo tahun 1937, photo Agence de presse Meurisse.LahirMarguerite Appell11 April 1883Meninggal5 Februari 1969(1969-02-05) (umur 85) Marguerite Borel dikenal luas sebagai Camille Marbo (11 April 1883 – 5 Februari 1969) née Marguerite Appell, adalah seorang penulis Prancis abad ke-20, presiden dan pemenang Prix Femina pada tahun 1913 dan presiden Société des gens de lettres. Biografi Putri matematikawan, Paul Appell (1855–1930), Camille Marbo diber...

 

Des esclaves hommes, femmes et enfants travaillant sous la surveillance d'un gardien à cheval dans un plantation de coton vers 1850. Les plantations du Sud des États-Unis sont des exploitations agricoles, étroitement associées à l'esclavagisme qui a sévi dans cette partie des États-Unis. Apparues avant le début de la guerre civile américaine (1861-1865), ces plantations furent établies dans le Sud des États-Unis sur un sol fertile jouissant d'un climat subtropical humide et recevan...

 

Questa voce o sezione sugli argomenti diritto amministrativo e trasporti non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Esempio di una scheda d'esame La prova teorica per il conseguimento della patente di guida consiste in un esame finalizzato all'ottenimento dell'autorizzazione ad esercitarsi alla guida,...

2010 mixtape by Danny Brown and Tony YayoHawaiian SnowMixtape by Danny Brown and Tony YayoReleasedSeptember 14, 2010GenreHip hopLength44:39LabelG-UnitProducerDoe PesciTony Yayo chronology Gunpowder Guru 2: The Remixes(2010) Hawaiian Snow(2010) Gunpowder Guru 3(2011) Danny Brown chronology The Hybrid(2010) Hawaiian Snow(2010) XXX(2011) Professional ratingsReview scoresSourceRatingPopMatters[1] Hawaiian Snow is a collaborative mixtape by American rappers Danny Brown and Tony Yay...

 

Welcome! Some cookies to welcome you! Welcome to Wikipedia, World's Lamest Critic! Thank you for your contributions. I am Govindaharihari and I have been editing Wikipedia for some time, so if you have any questions feel free to leave me a message on my talk page. You can also check out Wikipedia:Questions or type {{help me}} at the bottom of this page. Here are some pages that you might find helpful: Introduction The five pillars of Wikipedia How to edit a page Help pages How to write a grea...

 

2013 Indian filmMoney Back PolicyDirected byJayaraj VijayWritten byManoj RamsinghProduced byManoj RamsinghStarringSreenivasanNedumudi VenuAishwarya NambiarSarayu MohanSreejith VijayCinematographyMurali RamanEdited byK. SreenivasMusic byM. JayachandranProductioncompanyMarvelous EntertainmentsDistributed byMovie 2 Screen InternationalRelease date 21 June 2013 (2013-06-21) CountryIndiaLanguageMalayalam Money Back Policy is a 2013 Indian Malayalam-language comedy film directed by J...

Arditti QuartetArditti QuartetBackground informationOriginLondonYears active1974 (1974)–presentMembersIrvine ArdittiRalf EhlersLucas FelsAshot SarkissjanPast membersSee textWebsiteardittiquartet.com The Arditti Quartet is a string quartet founded in 1974 and led by the British violinist Irvine Arditti. The quartet is a globally recognized promoter of contemporary classical music[1] and has a reputation for having a very wide repertoire. They first became known taking into their...

 

Chinese TV series or program Ming DynastyAlso known asEmpress of the MingChinese nameTraditional Chinese大明風華Simplified Chinese大明风华Literal meaningThe Elegant and Talented (Consort) of the Great MingTranscriptionsStandard MandarinHanyu PinyinDàmíng fēnghuá GenreHistorical fictionBased onThe Chronicle of the Six Erasby Lianjing ZhuyiWritten byAn Jian, Daijin, Zhang TingDirected byZhang TingStarringTang WeiZhu YawenDeng JiajiaLay ZhangCountry of originChinaOriginal l...

 

Type of school A comprehensive school is a secondary school for pupils aged 11–16 or 11–18, that does not select its intake on the basis of academic achievement or aptitude, in contrast to a selective school system where admission is restricted on the basis of selection criteria, usually academic performance. The term is commonly used in relation to England and Wales, where comprehensive schools were introduced as state schools on an experimental basis in the 1940s and became more widespr...

Species of palm tree Mauritia flexuosa Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Clade: Commelinids Order: Arecales Family: Arecaceae Genus: Mauritia Species: M. flexuosa Binomial name Mauritia flexuosaL.f. Synonyms[1] Mauritia flexuosa var. venezuelana Steyerm. Mauritia minor Burret Mauritia sagus Schult. & Schult.f. Mauritia setigera Griseb. & H.Wendl. Mauritia sphaerocarpa Burret Mauritia vinifera Mart. Saguerus ...

 

RC2

RC2La funzione di mescolamento dell'RC2: quattro di esse costituiscono un MIXING round, un passaggio di mescolamentoGeneraleProgettistiRonald Rivest Prima pubblicazionesviluppato nel 1987, svelato nel 1996 DettagliDimensione chiaveda 8 a 128 bit, con incrementi di 8 bit (default: 64 bit) Dimensione blocco64 bit StrutturaRete di Feistel Numero di passaggi18 (16+2) Migliore crittanalisiUn attacco correlato alla chiave è attuabile con 234 testi in chiaro scelti (Kelsey ed aa.vv., 1997) Modifica...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!