Meromorf fonksiyon

Meromorf fonksiyon, özellikle karmaşık analizde, bir fonksiyon çeşidi. Daha açık bir ifadeyle, meromorf fonksiyon, karmaşık düzlemin açık bir D kümesi üzerinde fonksiyonun kutup noktalarından oluşan belli bir korunmalı noktalar kümesi haricinde D 'nin geriye kalan diğer noktalarının tümünde holomorf olan fonksiyondur. Meromorf kelimesi Yunanca "kısım", "parça" anlamına gelen “meros” (μέρος) ve "tüm", "bütün" anlamına gelen “holos” (ὅλος) kelimelerinin tezat bir birleşiminden ortaya çıkmış bir kelimedir.

D üzerindeki her meromorf fonksiyon, pay ve paydası D üzerinde holomorf olan ve paydası sabit bir şekilde 0 olmayan rasyonel bir fonksiyon şeklinde yazılabilir. Bu halde kutup noktaları, paydanın sıfır olduğu yerde olmaktadır.

Gama fonksiyonu tüm karmaşık düzlemde meromorftur.

Yani sezgisel olarak, meromorf fonksiyon iki tane güzel (yani holomorf) fonksiyonun oranıdır. Bu tür bir fonksiyon, orandaki paydanın sıfır olduğu ve bu yüzden fonksiyonun sonsuz değerleri aldığı noktalar dışında hala güzeldir.

Cebirsel bakış açısıyla, eğer D bağlantılıysa, o zaman meromorf fonksiyonlar kümesi holomorf fonksiyonların tamlık bölgesinin kesirler cismidir. Bu ilişki rasyonel sayılar kümesi ile tamsayılar kümesi arasındaki ilişkiye denktir.

Riemann yüzeylerinde meromorf fonksiyonlar

Bir Riemann yüzeyi üzerindeki her noktanın karmaşık düzlemin açık bir kümesine izomorf (eşyapılı) olan açık bir komşuluğu vardır. Bu sebeple, meromorf fonksiyon fikri her Riemann yüzeyi için de tanımlanabilir.

D tüm bir Riemann küresi olduğu zaman, her meromorf fonksiyon küre üzerinde rasyonel olduğu için, meromorf fonksiyonlar cismi karmaşık cisim üzerindeki bir değişkenli rasyonel fonksiyonlar cismi olur. (Bu GAGA prensibi denilen ifadenin özel bir durumudur.)

Her Riemann yüzeyinde, meromorf bir fonksiyon, Riemann küresine gönderilen ve sabit ∞ olmayan holomorf bir fonksiyonla aynıdır. Kutuplar burada ∞ 'a gönderilen karmaşık sayılara karşılık gelir.

Tıkız olmayan bir Riemann yüzeyinde, her meromorf fonksiyon iki tane holomorf fonksiyonun bölümü şeklinde yazılabilir. Tersine, tıkız bir Riemann yüzeyinde sabit olmayan meromorf fonksiyonlar bulmak mümkünken, her holomorf fonksiyon sabittir.

Elliptik eğriler üzerindeki meromorf fonksiyonlar aynı zamanda elliptik fonksiyonlar olarak da bilinirler.

Daha yüksek boyutlar

Çoklu karmaşık değişkenlerde, meromorf fonksiyonlar yerel olarak iki holomorf fonksiyonun bölümü olarak tanımlanırlar. Mesela, f(z1,z2)=z1/z2 iki boyutlu karmaşık afin uzayda meromorf bir fonksiyondur. Burada, artık, her meromorf fonksiyonu Riemann küresi üzerinde değerleri olan holomorf fonksiyon şeklinde anlamak doğru değildir: İki eşboyutu olan bir "belirsizlik" kümesi vardır (verilen örnekte bu küme (0,0) 'dan oluşmaktadır).

Bir boyuttakilerin aksine, daha yüksek boyutlarda sabit olmayan meromorf fonksiyonların bulunmadığı, çoğu karmaşık simit gibi, karmaşık manifoldlar bulunmaktadır.

Kaynakça


Read other articles:

1908 play by J. M. Barrie Original British production at the Duke of York's Theatre, 1908 What Every Woman Knows is a four-act play written by J. M. Barrie. It was first presented by impresario Charles Frohman at the Duke of York's Theatre in London on 3 September 1908. It ran for 384 performances, transferring to the Hicks Theatre between 21 December 1908 and 15 February 1909.[1] The play was first produced in America, also by Frohman, in 1908 at Atlantic City on 18 October 1908,[...

 

Periferie kan verwijzen naar: WikiWoordenboek Zoek periferie op in het WikiWoordenboek. Periferie (aardrijkskunde), de randgebieden van een stad, het achterland van een natie of de minder ontwikkelde delen van de wereld Periferie (economie), een model van agglomeratie-economieën (ook wel kern-periferietheorie) Periferie (sociologie), een door Niklas Luhmann ontwikkeld onderdeel van de systeemtheorie Periferie (wiskunde), een door een kromme lijn begrensd vlak Periferisch zicht of perifeer zi...

 

Dutch cyclist In this Dutch name, the surname is van der Touw, not Touw. Piet van der TouwPiet van der Touw in 1963Personal informationBorn (1940-11-29) 29 November 1940 (age 83)Rijswijk, the NetherlandsHeight1.83 m (6 ft 0 in)Weight80 kg (180 lb)SportSportCycling Pieter Carel Cornelis Piet van der Touw (born 29 November 1940) is a retired Dutch cyclist.[1] He competed at the 1960 and 1964 Summer Olympics in five events in total. He finished in fourth pla...

Algebraic structure → Group theoryGroup theory Basic notions Subgroup Normal subgroup Quotient group (Semi-)direct product Group homomorphisms kernel image direct sum wreath product simple finite infinite continuous multiplicative additive cyclic abelian dihedral nilpotent solvable action Glossary of group theory List of group theory topics Finite groups Cyclic group Zn Symmetric group Sn Alternating group An Dihedral group Dn Quaternion group Q Cauchy's theorem Lagrange's theorem Sylow the...

 

Motorways in Belgium In Belgium, the motorways (Dutch: autosnelwegen; French: autoroutes; German: Autobahnen) are indicated by an A and an E (for European) number. The E numbers are used most often. Roads that are (part of) a ring road around a town or city are mostly indicated by an R number. Since 1989, all highways are built and maintained by the governments of the three regions (Flanders, Wallonia and Brussels). For safety on motorways in Belgium, 60% of killed travelers did not wear thei...

 

Genus of ray-finned fishes Anchoa Anchoa lyolepis Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Clupeiformes Family: Engraulidae Subfamily: Engraulinae Genus: AnchoaD. S. Jordan & Evermann, 1927 Type species Engraulis compressusGirard, 1858 Anchoa is a genus of ray-finned fishes in the family Engraulidae. It currently consists of 35 species. Species There are currently 35 recognized species in this genus:[1] Anchoa anal...

Ildefons Cerdà (1878, Gemälde von Ramon Martí i Alsina). Ildefons Cerdà i Sunyer [ildəˈfɔns sərˈda i suˈɲe] (* 23. Dezember 1815 in Centelles; † 21. August 1876 in Caldas de Besaya bei Santander) war ein fortschrittlicher katalanischer Stadtplaner, der Barcelonas Stadtteil Eixample entworfen hat. Inhaltsverzeichnis 1 Biographie 2 Arbeitsweise 3 Kontroverse 4 Schriften 5 Literatur 6 Weblinks 7 Einzelnachweise Biographie Ursprünglich war Cerdà Bauingenieur. Als die Regierung dem ...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目没有列出任何参考或来源。 (2018年4月19日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 此條目含有過多、重複或不必要的内部链接。 (2023年3月11日)請根据格式指引,移除重复、標題链接以及任何与内容无关的链接。 ...

 

Comics character SlaymasterThe SlaymasterPublication informationPublisherMarvel ComicsFirst appearanceSuper Spider-Man and Captain Britain #243 (October 1977)Created byJim Lawrence (writer)Larry Lieber (writer)Ron Wilson (artist)In-story informationSpeciesHumanTeam affiliationsCrazy GangNotable aliasesElectro-ManAbilitiesExceptional martial artist and tactician Slaymaster is a fictional character appearing in American comic books published by Marvel Comics. The character has appeared in the C...

Po Lam寶琳Stasiun angkutan cepat MTRNama TionghoaHanzi Tradisional 寶琳 Hanzi Sederhana 宝琳 Arti harfiahTreasure fine jadeTranskripsiTionghoa StandarHanyu PinyinBǎolínYue: KantonRomanisasi YaleBóulahmJyutpingBou2lam4 Informasi umumLokasiPo Lam, Tseung Kwan ODistrik Sai Kung, Hong KongKoordinat22°19′21″N 114°15′29″E / 22.3224°N 114.258°E / 22.3224; 114.258Koordinat: 22°19′21″N 114°15′29″E / 22.3224°N 114.258°E࿯...

 

Japanese manga series by Fujihiko Hosono and its anime adaptation Dokkiri DoctorManga volume 1 coverどっきりドクター(Dokkiri Dokutā)GenreComedy[1] MangaWritten byFujihiko HosonoPublished byShogakukanImprintShōnen Sunday ComicsMagazineWeekly Shōnen SundayDemographicShōnenOriginal runMarch 18, 1981 – February 3, 1982Volumes4 Anime television seriesDirected byKazunori MizunoWritten bySatoru NishizonoMusic byHiromoto TobisawaStudioPierrotOriginal net...

 

List of events in Ireland in 2006 For Northern Ireland, see 2006 in Northern Ireland. ← 2005 2004 2003 2002 2001 2006 in Ireland → 2007 2008 2009 2010 2011 Centuries: 19th 20th 21st Decades: 1980s 1990s 2000s 2010s 2020s See also:2006 in Northern IrelandOther events of 2006List of years in Ireland Events from the year 2006 in Ireland. Incumbents President: Mary McAleese Taoiseach: Bertie Ahern (FF) Tánaiste: Mary Harney (PD) (until 13 September 2006) Michael McDowell (PD) (from 1...

Founder of chiropractic (1845–1913) Daniel David PalmerBornMarch 7, 1845Brown's Corners, Canada West (now Ajax),[1] Pickering, Ontario, Canada[2][3]DiedOctober 20, 1913(1913-10-20) (aged 68)Los Angeles, California, USAOccupationChiropractorSpouses Abba Lord Louvenia Landers Lavinia McGee Martha A. Henning Villa Amanda Thomas Molly (Mary) Hudler ChildrenB. J. PalmerParent(s)Thomas Palmer, Katherine McVay This article is part of a series onAlternative medicine Gen...

 

The CinemathequeAddress1131 Howe StreetVancouver, British ColumbiaTypecinema, film archiveCapacity153 The Cinematheque marquee at 1131 Howe Street. The Cinematheque (legal name: Pacific Cinémathèque Pacifique), founded in 1972, is a Canadian charity and non-profit film institute, media education centre, and film exhibitor based in Vancouver, British Columbia. The organization's mission is to foster the appreciation of the art and legacy of cinema, and to advance critical thinking and though...

 

Book by Isaac Asimov Opus 100 Dust-jacket from the first editionAuthorIsaac AsimovCountryUnited StatesLanguageEnglishPublisherHoughton MifflinPublication date1969Media typePrint (Hardback, paperback)Pages318ISBN978-0-395-07351-3 Opus 100 is a collection by American writer and scientist Isaac Asimov. It was published by Houghton Mifflin on 16 October 1969. Asimov chose to celebrate the publication of his hundredth book by writing about his previous 99 books, including excerpts from short ...

Ottoman princess, Daughter of Ottoman Sultan Ahmed III Zeynep SultanBorn8 April 1714Topkapı Palace, Constantinople, Ottoman Empire (present day Istanbul, Turkey)Died25 March 1774(1774-03-25) (aged 59)Constantinople, Ottoman EmpireBurialZeynep Sultan Mosque, Eminönü, IstanbulSpouse Sinek Mustafa Pasha ​ ​(m. 1728; died 1764)​ Melek Mehmed Pasha ​(m. 1765)​IssueFirst marriageSultanzade Yüsuf BeyDynastyOttomanF...

 

Former Acting Governor of Arkansas William Kavanaugh OldhamActing Governor of ArkansasIn officeMarch 8, 1913 – March 13, 1913Preceded byJoseph Taylor Robinson as GovernorSucceeded byJunius Marion FutrellPresident of the Arkansas SenateIn office1913Succeeded byJunius Marion Futrell Personal detailsBorn(1865-05-20)May 20, 1865Richmond, Kentucky, U.S.DiedMay 6, 1938(1938-05-06) (aged 72)Pettus, Arkansas, U.S. William Kavanaugh Oldham (May 20, 1865 – May 6, 1938) was the Acting ...

 

American multinational investment bank This article is about Bank of America's investment banking arm. For details about its wealth management arm, see Merrill (company). BofA SecuritiesBank of America Tower, the global headquarters of BofA SecuritiesTypeDivisionIndustryFinancial servicesPredecessorsMerrill Lynch & Co.Banc of America SecuritiesFoundedJanuary 1, 2009HeadquartersBank of America Tower (New York City, U.S.)Area servedWorldwideKey peopleBrian T Moynihan (CEO)ProductsInvestment...

ロディニア大陸(ロディニアたいりく、Rodinia)とは、プレートテクトニクス理論において、約11億年前から7億5000万年前にかけて存在したと考えられている[1]、世界のほぼ全ての陸塊が集まってできた超大陸である。「ロディニア」という名前はマーク・マクメナミンが1990年に命名、これはロシア語で「故郷」を意味する単語の「ロージナ」(родина, rodina)に...

 

Aricanduvacomune Aricanduva – Veduta LocalizzazioneStato Brasile Stato federato Minas Gerais MesoregioneJequitinhonha MicroregioneCapelinha AmministrazioneSindacoMaria Arlete dos Santos Azevedo TerritorioCoordinate17°52′04″S 42°33′21″W17°52′04″S, 42°33′21″W (Aricanduva) Altitudine928 m s.l.m. Superficie243,329 km² Abitanti4 770[1] (2010) Densità19,6 ab./km² Altre informazioniPrefisso38 Fuso orarioUTC-3 Codice IBGE3104452 Nome abi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!