แฟกทอเรียล

ตัวอย่างแฟกทอเรียล; ค่าในสัญกรณ์วิทยาศาสตร์ทำการย่อไว้
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
25 1.551121004×1025
50 3.041409320×1064
70 1.197857167×10100
100 9.332621544×10157
450 1.733368733×101000
1000 4.023872601×102567
3249 6.412337688×1010000
10000 2.846259681×1035659
25206 1.205703438×10100000
100000 2.824229408×10456573
205023 2.503898932×101000004
1000000 8.263931688×105565708
10100 1010101.9981097754820

ในทางคณิตศาสตร์ แฟกทอเรียล (อังกฤษ: factorial) ของจำนวนเต็มไม่เป็นลบ n คือผลคูณของจำนวนเต็มบวกทั้งหมดที่น้อยกว่าหรือเท่ากับ n เขียนแทนด้วย n! (อ่านว่า n แฟกทอเรียล)

ตัวอย่างเช่น

สำหรับค่าของ 0! ถูกกำหนดให้เท่ากับ 1 ตามหลักการของผลคูณว่าง [1]

การดำเนินการแฟกทอเรียลพบได้ในคณิตศาสตร์สาขาต่าง ๆ โดยเฉพาะอย่างยิ่งคณิตศาสตร์เชิงการจัด พีชคณิต และคณิตวิเคราะห์ การพบเห็นโดยพื้นฐานที่สุดคือข้อเท็จจริงที่ว่า การจัดลำดับวัตถุที่แตกต่างกัน n สิ่งสามารถทำได้ n! วิธี (การเรียงสับเปลี่ยนของเซตของวัตถุ) ข้อเท็จจริงนี้เป็นที่ทราบโดยนักวิชาการชาวอินเดียตั้งแต่ต้นคริสต์ศตวรรษที่ 12 เป็นอย่างน้อย [2] นอกจากนี้ คริสเตียน แครมป์ (Christian Kramp) เป็นผู้แนะนำให้ใช้สัญกรณ์ n! เมื่อ ค.ศ. 1808 (พ.ศ. 2351) [3]

นิยามของแฟกทอเรียลสามารถขยายแนวคิดไปบนอาร์กิวเมนต์ที่ไม่เป็นจำนวนเต็มได้โดยยังคงมีสมบัติที่สำคัญ ซึ่งเกี่ยวข้องกับคณิตศาสตร์ชั้นสูงยิ่งขึ้น โดยเฉพาะอย่างยิ่งเทคนิคต่าง ๆ ที่ใช้ในคณิตวิเคราะห์

นิยาม

ฟังก์ชันแฟกทอเรียลได้นิยามเชิงรูปนัยไว้ดังนี้

หรือนิยามแบบเวียนเกิดได้ดังนี้

นิยามด้านบนทั้งสองได้รวมกรณีนี้เข้าไปด้วย

ตามหลักการว่าผลคูณของจำนวนที่ไม่มีอยู่เลย (ผลคูณว่าง) มีค่าเท่ากับ 1 สิ่งนี้เป็นประโยชน์เนื่องจาก

  • การเรียงสับเปลี่ยนของวัตถุศูนย์สิ่ง มีเพียงหนึ่งวิธีเท่านั้น (ไม่มีสิ่งใดเรียงสับเปลี่ยน "ทุกสิ่ง" ยังคงอยู่ที่เดิม)
  • ความสัมพันธ์เวียนเกิด (n + 1)! = n! × (n + 1) ซึ่งสามารถใช้ได้เฉพาะ n > 0 จะทำให้ใช้กับกรณี n = 0 ได้ด้วย
  • นิพจน์ของสูตรต่าง ๆ ที่มีแฟกทอเรียลสามารถใช้งานได้ อย่างเช่นฟังก์ชันเลขชี้กำลังในรูปแบบอนุกรมกำลัง
  • เอกลักษณ์ต่าง ๆ ในคณิตศาสตร์เชิงการจัดสามารถใช้งานได้ สำหรับขนาดของวัตถุที่ประยุกต์ใช้ได้ทั้งหมด จำนวนวิธีที่จะเลือกสมาชิก 0 ตัวจากเซตว่างเท่ากับ หรือโดยนัยทั่วไป จำนวนวิธีที่จะเลือกสมาชิก (ทั้งหมด) n ตัวจากเซตที่มีขนาด n เท่ากับ

ฟังก์ชันแฟกทอเรียลสามารถนิยามให้กับค่าที่ไม่เป็นจำนวนเต็มได้โดยใช้คณิตศาสตร์ขั้นสูง ดูรายละเอียดด้านล่าง ซึ่งนิยามโดยนัยทั่วไปมากขึ้นเช่นนี้มีใช้ในเครื่องคิดเลขระดับสูงและซอฟต์แวร์คณิตศาสตร์อาทิเมเพิลหรือแมเทอแมติกา

การประยุกต์

แม้ว่าฟังก์ชันแฟกทอเรียลมีที่มาจากคณิตศาสตร์เชิงการจัด แต่สูตรที่เกี่ยวข้องกับแฟกทอเรียลก็ปรากฏในคณิตศาสตร์หลายสาขา

  • การเรียงสับเปลี่ยน (permutation) โดยพื้นฐานคือการเรียงลำดับวัตถุ n สิ่งที่แตกต่างกัน ซึ่งสามารถทำได้ n! วิธี
  • บ่อยครั้งที่แฟกทอเรียลปรากฏเป็นตัวส่วนในสูตรเพื่ออธิบายว่า การเรียงลำดับของวัตถุไม่มีความสำคัญและถูกเพิกเฉย ตัวอย่างตามแบบฉบับเช่น การจัดหมู่ (combination) วัตถุ k สิ่งจากเซตของวัตถุ n สิ่ง เราอาจจัดหมู่โดยการเรียงสับเปลี่ยนวัตถุ k สิ่ง หมายความว่าเลือกวัตถุสิ่งหนึ่งออกจากเซตทีละครั้งเป็นจำนวน k ครั้ง กระทั่งได้จำนวนวิธีรวมเท่ากับ
อย่างไรก็ตาม การเรียงลำดับของวัตถุที่ถูกเลือกในการจัดหมู่ไม่มีความสำคัญ และเนื่องจากการเรียงลำดับวัตถุ k สิ่งสามารถกระทำได้แตกต่างกัน k! วิธี เพราะฉะนั้นจำนวนวิธีของการจัดหมู่วัตถุ k สิ่งจากเซตของวัตถุ n สิ่งที่ถูกต้องจึงควรเท่ากับ
ผลลัพธ์ดังกล่าวเป็นที่รู้จักในชื่อสัมประสิทธิ์ทวินาม เพราะว่ามันเป็นสัมประสิทธิ์ของพจน์ Xk ในการกระจาย (1 + X)n
  • แฟกทอเรียลปรากฏในพีชคณิตด้วยเหตุผลหลายประการ ตัวอย่างเช่นสัมประสิทธิ์ของสูตรทวินามดังที่กล่าวแล้ว หรือการเฉลี่ยบนการเรียงสับเปลี่ยนเพื่อการทำให้สมมาตร (symmetrization) ของการดำเนินการเฉพาะอย่าง
  • แฟกทอเรียลก็มีใช้ในแคลคูลัส ตัวอย่างเช่นตัวส่วนของพจน์ในอนุกรมเทย์เลอร์ (Taylor series) เพื่อชดเชยข้อเท็จจริงโดยพื้นฐานว่าอนุพันธ์ชั้นที่ n ของ xn คือ n!
  • แฟกทอเรียลก็มีใช้อย่างกว้างขวางในทฤษฎีความน่าจะเป็น
  • แฟกทอเรียลมีประโยชน์ทำให้การจัดดำเนินการนิพจน์สะดวกขึ้น ตัวอย่างเช่นจำนวนวิธีของการเรียงสับเปลี่ยนของวัตถุ k สิ่งจากวัตถุ n สิ่ง สามารถเขียนได้เป็น
มันอาจถูกใช้เพื่อพิสูจน์สมบัติสมมาตรของสัมประสิทธิ์ทวินาม ในกรณีที่ไม่มีประสิทธิภาพเพียงพอที่จะคำนวณจำนวนเช่นนั้นได้

ทฤษฎีจำนวน

แฟกทอเรียลมีการใช้งานหลายอย่างในทฤษฎีจำนวน โดยเฉพาะอย่างยิ่ง n! สามารถหารด้วยจำนวนเฉพาะทั้งหมดที่น้อยกว่าหรือเท่ากับ n ได้ลงตัว ผลสรุปที่ตามมาคือ n > 5 จะเป็นจำนวนประกอบก็ต่อเมื่อ

ทฤษฎีของวิลสัน (Wilson's theorem) ได้กล่าวถึงผลสรุปที่เคร่งครัดมากกว่าดังนี้

ก็ต่อเมื่อ p เป็นจำนวนเฉพาะ

อาเดรียง-มารี เลอฌ็องดร์ (Adrien-Marie Legendre) พบว่าการคูณของจำนวนเฉพาะ p ที่ปรากฏในการแยกตัวประกอบเฉพาะของ n! สามารถแสดงได้อย่างแม่นยำเป็น

ข้อเท็จจริงนี้มีพื้นฐานบนการนับจำนวนตัวประกอบ p ของจำนวนเต็มตั้งแต่ 1 ถึง n; จำนวนพหุคูณของ p ในจำนวนเต็มตั้งแต่ 1 ถึง n สามารถพิจารณาได้จากสูตร อย่างไรก็ตามสูตรนี้จะนับตัวประกอบ p เพียงครั้งเดียว ยังคงมีตัวประกอบจำนวน ตัวของ p ที่จะต้องนับอีก และยังมีที่คล้ายกันอีกในกำลังสาม สี่ ห้า จนถึงอนันต์ ผลรวมดังกล่าวเป็นจำนวนจำกัดเนื่องจาก pi สามารถมีค่าได้แค่น้อยกว่าหรือเท่ากับ n สำหรับ i หลายค่าอย่างจำกัด และฟังก์ชันพื้นจะให้ผลลัพธ์เป็น 0 เมื่อใช้กับ pi > n

แฟกทอเรียลที่เป็นจำนวนเฉพาะด้วยมีจำนวนเดียวคือ 2 แต่ก็มีจำนวนเฉพาะจำนวนมากที่อยู่ในรูปแบบ n! ± 1 เรียกว่าจำนวนเฉพาะเชิงแฟกทอเรียล (factorial prime)

แฟกทอเรียลที่มากกว่า 0! และ 1! เป็นจำนวนคู่ทั้งหมด เพราะว่าเป็นพหุคูณของ 2 นอกจากนี้แฟกทอเรียลที่มากกว่า 5! ก็เป็นพหุคูณของ 10 (และทำให้มีศูนย์ลงท้ายในหลักสุดท้ายเป็นต้นไป) เนื่องจากเป็นพหุคูณของ 5 กับ 2

อนุกรมที่มีแต่ละพจน์เป็นส่วนกลับของแฟกทอเรียล ทำให้เกิดอนุกรมลู่เข้าและมีค่าเท่ากับ e

อัตราการเติบโตและการประมาณเมื่อ n มีขนาดใหญ่

การลงจุดของลอการิทึมธรรมชาติของแฟกทอเรียล

เมื่อ n มีค่าเพิ่มขึ้น ค่า n! จะมีอัตราการเติบโตมากกว่าพหุนามและฟังก์ชันเลขชี้กำลังทั้งหมดที่มี n ประกอบอยู่ (แต่ก็ยังน้อยกว่าฟังก์ชันเลขชี้กำลังสองชั้น)

การประมาณค่าที่ใกล้เคียงที่สุดของ n! ใช้พื้นฐานบนลอการิทึมธรรมชาติดังนี้

กราฟของฟังก์ชัน f(n) = log n! แสดงไว้ในภาพด้านขวา ลักษณะของกราฟดูเหมือนเป็นเส้นตรง (ฟังก์ชันเชิงเส้น) สำหรับทุกค่าของ n ที่เป็นไปได้ แต่ความจริงมันไม่ใช่เส้นตรง เราอาจประมาณค่า log n! อย่างง่ายโดยกำหนดขอบเขตบนและล่างด้วยปริพันธ์

ซึ่งจะได้การประมาณค่าดังนี้

เนื่องจากการคำนวณ log n! มีประสิทธิภาพเป็น Θ(n log n) สิ่งนี้จึงมีบทบาทหลักในการวิเคราะห์ความซับซ้อนในการคำนวณของขั้นตอนวิธีการเรียงลำดับ (ดูเพิ่มที่การเรียงลำดับแบบเปรียบเทียบ)

จากขอบเขตของ log n! ที่ได้ สามารถลดรูปจนเหลือเพียง

การใช้สูตรดังกล่าวในทางปฏิบัติบางครั้งสามารถประมาณได้ง่ายกว่าแต่ไม่เคร่งครัด สูตรดังกล่าวสามารถแสดงให้เห็นได้ว่า สำหรับทุกค่าของ n จะได้ และสำหรับ n ≥ 6 จะได้ เป็นต้น

เมื่อ n เป็นจำนวนขนาดใหญ่ เรามีวิธีการประมาณค่า n! ที่ดีกว่าโดยใช้การประมาณของสเตอร์ลิง (Stirling's approximation)

ในความเป็นจริง สำหรับทุกค่าของ n สูตรดังกล่าวสามารถพิสูจน์ได้ว่า

การประมาณค่า log n! ที่ดีกว่าอีกสูตรหนึ่ง กำหนดไว้โดย ศรีนิวาสะ รามานุจัน ดังนี้ [4]

การขยายแฟกทอเรียลไปยังอาร์กิวเมนต์ที่ไม่เป็นจำนวนเต็ม

ฟังก์ชันแกมมาและฟังก์ชันพาย

ฟังก์ชันแฟกทอเรียลที่วางนัยทั่วไปบนจำนวนจริงทุกจำนวนยกเว้นจำนวนเต็มลบ ตัวอย่าง 0! = 1! = 1, (−0.5)! = √π, (0.5)! = √π/2

นอกเหนือจากจำนวนเต็มที่ไม่เป็นลบแล้ว ฟังก์ชันแฟกทอเรียลสามารถนิยามให้กับค่าอื่นที่ไม่เป็นจำนวนเต็มได้ แต่การทำเช่นนี้จำเป็นต้องใช้เครื่องเครื่องมือขั้นสูงจากคณิตวิเคราะห์ ฟังก์ชันอันหนึ่งที่ "เติมเต็ม" ค่าต่าง ๆ ของแฟกทอเรียล (แต่มีค่าเลื่อนไป 1 ในอาร์กิวเมนต์) เรียกว่าฟังก์ชันแกมมา (Gamma function) เขียนแทนด้วย Γ(z) ซึ่งนิยามบนจำนวนเชิงซ้อน z ทุกจำนวนยกเว้นจำนวนเต็มลบ และส่วนจริงของ z เป็นจำนวนบวก ดังนี้

ความสัมพันธ์ระหว่างฟังก์ชันแกมมากับแฟกทอเรียลเมื่อ n เป็นจำนวนธรรมชาติ เป็นดังนี้

สูตรดั้งเดิมของออยเลอร์สำหรับนิยามฟังก์ชันแกมมาคือ

ยังมีสัญกรณ์อีกอย่างหนึ่งซึ่งเกาส์เป็นผู้คิดค้นและบางครั้งก็ถูกใช้เช่นกัน นั่นคือ ฟังก์ชันพาย (Pi function) เขียนแทนด้วย Π(z) นิยามไว้สำหรับจำนวนจริง z ที่ไม่น้อยกว่า 0 ดังนี้

หากเทียบกับฟังก์ชันแกมมาจะได้ว่า

ฟังก์ชันพายเป็นการขยายแนวคิดแฟกทอเรียลอย่างแท้จริงดังนี้

ยิ่งไปกว่านี้ ฟังก์ชันพายมีการเวียนเกิดเหมือนกับแฟกทอเรียล แต่ใช้กับจำนวนเชิงซ้อน z ทุกจำนวนที่นิยาม

โดยข้อเท็จจริงความสัมพันธ์เวียนเกิดไม่มีอีกต่อไปแล้ว เว้นแต่ในสมการเชิงฟังก์ชัน เมื่อแสดงในพจน์ของฟังก์ชันแกมมา สมการดังกล่าวจะเปลี่ยนเป็น

เนื่องจากแฟกทอเรียลถูกขยายโดยฟังก์ชันพาย สำหรับจำนวนเชิงซ้อน z ทุกจำนวนที่นิยาม เราจึงสามารถเขียนว่า

ค่าของฟังก์ชันเหล่านี้ที่จำนวนเต็มครึ่ง (half-integer) สามารถพิจารณาได้จากสูตรต่อไปนี้ โดยพื้นฐานเราทราบว่า

เมื่อ n เป็นจำนวนธรรมชาติ จะได้สูตร

ตัวอย่าง

และอีกสูตรหนึ่ง

ตัวอย่าง

ฟังก์ชันพายไม่ได้เป็นเพียงฟังก์ชันเดียวที่ขยายแฟกทอเรียล ไปเป็นฟังก์ชันสำหรับจำนวนเชิงซ้อนเกือบทุกจำนวน และไม่ได้เป็นเพียงฟังก์ชันเดียวที่เป็นฟังก์ชันวิเคราะห์ (analytic function) เมื่อใดก็ตามที่มันถูกนิยาม แต่ไม่ว่าด้วยเหตุผลอันใด ฟังก์ชันพายมักเป็นตัวแทนโดยปริยายเมื่อต้องการหาค่าแฟกทอเรียลของจำนวนเชิงซ้อน ตัวอย่างเช่น ทฤษฎีบทบอร์-โมลเลอรัประบุว่า ฟังก์ชันแกมมาเป็นฟังก์ชันเดียวที่รับค่า 1 แล้วให้ผลลัพธ์เป็น 1, สอดคล้องกับสมการเชิงฟังก์ชัน Γ(n + 1) = nΓ(n), เป็นฟังก์ชันมีโรมอร์ฟิก (meromorphic function) บนจำนวนเชิงซ้อน, และเป็นฟังก์ชันคอนเวกซ์เชิงลอการิทึม (logarithmically convex function) บนแกนจำนวนจริงบวก เงื่อนไขที่คล้ายกันนี้ก็ปรากฏในฟังก์ชันพาย โดยเปลี่ยนสมการเชิงฟังก์ชันเป็น Π(n) = nΠ(n − 1)

อย่างไรก็ตาม ก็ยังมีฟังก์ชันเชิงซ้อนอื่นที่เรียบง่ายกว่าฟังก์ชันวิเคราะห์และสอดแทรกแฟกทอเรียลเข้าไป ตัวอย่างเช่น "ฟังก์ชันแกมมา" ของฌัก อาดามาร์ (Jacques Hadamard) ต่างจากฟังก์ชันแกมมาปรกติตรงที่มันเป็นฟังก์ชันทั่ว (entire function) [5][6]

ออยเลอร์ยังได้สร้างสูตรสำหรับการประมาณค่าด้วยผลคูณลู่เข้าสำหรับแฟกทอเรียลที่ไม่ใช่จำนวนเต็ม ซึ่งเทียบเท่ากับสูตรของฟังก์ชันแกมมาที่ได้กล่าวไว้แล้ว

อย่างไรก็ดี สูตรนี้ไม่ได้ให้วิธีการคำนวณเชิงปฏิบัติของฟังก์ชันพายหรือฟังก์ชันแกมมา เนื่องด้วยอัตราการลู่เข้าของมันนั้นช้า

การประยุกต์ใช้ฟังก์ชันแกมมา

ปริมาตรของทรงกลม n มิติที่มีรัศมี R หน่วย คำนวณได้จากสูตร

ฟังก์ชันที่มีลักษณะคล้ายกับแฟกทอเรียล

มัลติแฟกทอเรียล

มัลติแฟกทอเรียล เป็นฟังก์ชันที่เขียนอยู่ในรูปแบบ n!, n!! หรือมีเครื่องหมายแฟกทอเรียลมากกว่านั้น

n!! หมายถึง ดับเบิลแฟกทอเรียล ของ n ซึ่งนิยามโดย

ตัวอย่างเช่น 8!! = 2 · 4 · 6 · 8 = 384 and 9!! = 1 · 3 · 5 · 7 · 9 = 945 ลำดับของดับเบิลแฟกทอเรียล สำหรับ n = 0, 1, 2,... ได้แก่

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, ...

จากนิยามดังกล่าวทำให้สามารถหาดับเบิลแฟกทอเรียลของจำนวนเต็มลบได้คือ

ลำดับของดับเบิลแฟกทอเรียลสำหรับ n = -1, -3, -5, -7,... คือ

1, -1, 1/3, -1/15, ...

เอกลักษณ์ของดับเบิลแฟกทอเรียลได้แก่

ฟังก์ชันมัลติแฟกทอเรียลอื่นๆ ที่มีเครื่องหมายแฟกทอเรียล k เครื่องหมาย มีนิยามโดย

ซูเปอร์แฟกทอเรียล

ซูเปอร์แฟกทอเรียล มีรูปแบบคือ

เช่น ซูเปอร์แฟกทอเรียลของ 4 คือ

อ้างอิง

  1. Ronald L. Graham, Donald E. Knuth, Oren Patashnik (1988) Concrete Mathematics, Addison-Wesley, Reading MA. ISBN 0-201-14236-8, p. 111
  2. N. L. Biggs, The roots of combinatorics, Historia Math. 6 (1979) 109−136
  3. Higgins, Peter (2008), Number Story: From Counting to Cryptography, New York: Copernicus, p. 12, ISBN 978-1-84800-000-1 says Krempe though.
  4. Ramanujan, Srinivasa (1988), The lost notebook and other unpublished papers, Springer Berlin, p. 339, ISBN 354018726X
  5. Hadamard, M. J. (1894), Sur L’Expression Du Produit 1·2·3· · · · ·(n−1) Par Une Fonction Entière (PDF) (ภาษาฝรั่งเศส), OEuvres de Jacques Hadamard, Centre National de la Recherche Scientifiques, Paris, 1968
  6. Peter Luschny, Hadamard versus Euler - Who found the better Gamma function?.

Read other articles:

Don Hany Don durante la entrega de los premios AACTA en el 2012.Información personalNacimiento 18 de septiembre de 1975 (48 años)Sídney, AustraliaNacionalidad AustralianaFamiliaCónyuge Alin Sumarwata (2011 – presente)Hijos Tilda Hany (2011)EducaciónEducado en Western Sydney University Información profesionalOcupación Actor, actor de cine y actor de televisión Años activo desde 1998[editar datos en Wikidata] Don Hany es un famoso actor australiano, conocido por haber ...

 

Lokomotif B22Lokomotif B2209 di Museum Transportasi Taman Mini Indonesia Indah (TMII).Data teknisSumber tenagaUapProdusenHartmann, JermanNomor seriB22Tanggal dibuat1898–1901Jumlah dibuat20 unitSpesifikasi rodaNotasi Whyte0-4-2Susunan roda AARB-1Klasifikasi UICB1DimensiLebar sepur1.067 mmPanjang7.850 mmBeratBerat kosong25,1 tonBahan bakarJenis bahan bakarKayu/BatubaraSistem mesinKinerjaKecepatan maksimum60 km/hLain-lain Lokomotif B2220 di Museum Kereta Api Ambarawa, 1991. Lokomotif B22 adala...

 

سفارة منغوليا في الولايات المتحدة منغوليا الولايات المتحدة الإحداثيات 38°54′19″N 77°03′28″W / 38.9054°N 77.0579°W / 38.9054; -77.0579 البلد الولايات المتحدة  المكان شمال غربي واشنطن العاصمة العنوان M Street (Washington, D.C.) [الإنجليزية]‏ تعديل مصدري - تعديل   سفارة منغوليا في الو...

Dieser Artikel behandelt den französischen Objektkünstler und Mitbegründer des Nouveau Réalisme. Zu weiteren Personen und anderen Bedeutungen des Begriffes siehe Arman (Begriffsklärung). Arman (1969) Arman, eigentlich Armand Pierre Fernandez (* 17. November 1928 in Nizza; † 22. Oktober 2005 in New York) war ein französisch-US-amerikanischer Objektkünstler und Mitbegründer des Nouveau Réalisme. Von einem Druckfehler auf den Einladungskarten zu einer Ausstellung in der Galerie Iris C...

 

Trade union of African American farmers The Sharecroppers' Union, also known as SCU or Alabama Sharecroppers’ Union, was a trade union of predominantly African American tenant farmers (commonly referred to as sharecroppers) in the American South that operated from 1931 to 1936. Its aims were to improve wages and working conditions for sharecroppers.[1] Founded in 1931 in Tallapoosa County, Alabama, the Sharecroppers' Union had its origins in the Croppers’ and Farm Workers’ Union...

 

38°38′N 42°49′E / 38.633°N 42.817°E / 38.633; 42.817 بحيرة وانالموقع الجغرافي / الإداريالإحداثيات 38°38′00″N 42°49′00″E / 38.633333333333°N 42.816666666667°E / 38.633333333333; 42.816666666667 التقسيم الإداري وان — بدليس دول الحوض تركيا هيئة المياهالنوع بحيرة مالحة — مزار سياحي — soda lake (en) — tectonic lake (...

Beberapa pria memecah kacang ek untuk diberikan kepada babi. Lukisan dari abad ke 14. Pannage di zaman modern di New Forest Pannage adalah praktik pelepasan hewan ternak babi ke hutan supaya babi-babi tersebut memakan kacang pohon yang jatuh ke tanah. Dalam sejarah, pannage adalah sebuah hak yang diberikan kepada rakyat biasa yang menghuni lahan di sekitar hutan kerajaan atau lahan bersama (common land).[1] Praktik ini masih dilakukan di timur Inggris sebagai sebuah pemanfaatan ekonom...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: SMK Negeri 1 Cariu – berita · surat kabar · buku · cendekiawan · JSTOR SMK Negeri 1 CariuSMK Negeri 1 Cariu Kabupaten BogorInformasiDidirikan2004AkreditasiAMaskotBerakhlak dan KreatifKepala SekolahD...

 

شكل1: مثال على جسر ملحي بين الحمضين الأمينيين جلوتامين وليسين توضح تآثرا إلكتروستاتيا وترابطا هيدروجينيا. الجسر الملحي في الكيمياء هو توليفة تآثرين غير تساهميين: الترابط الهيدروجيني والترابط الأيوني (الشكل1). ويُلاحظ بشكل شائع إساهمه في استقرار بُنى البروتين المتطوية غير ...

US Navy Flag officer Jeffrey T. JablonOfficial portrait, 2021Born1964 (age 58–59)AllegianceUnited States of AmericaService/branchUnited States NavyYears of service1987–presentRankRear AdmiralCommands heldSubmarine Force, U.S. Pacific FleetSubmarine Group 10Submarine Development Squadron 5USS Philadelphia (SSN 690)AwardsNavy Distinguished Service MedalDefense Superior Service MedalLegion of Merit (5)Alma materVirginia TechJames Madison University (MBA)Spouse(s)Trish...

 

Chinese provincial television broadcaster Logo of HNTV Henan Television, (Chinese: 河南电视台) commonly abbreviated as HNTV, a provincial television broadcaster is headquartered in Zhengzhou, Henan province, China. Foundation HNTV was founded on September 15, 1969. Network Now Henan Television (HNTV) has a network of 15 channels (ten for free, five for pay-vision) broadcasting different programmes.[1] References ^ 河南电视台简介 (in Chinese). 大象网. 2012-12-07. Arc...

 

تشكيلات منتخبات كأس العالم 2014معلومات عامةجزء من كأس العالم 2014 الرياضة كرة القدم البلد البرازيل بتاريخ 2014 تشكيلات منتخبات كأس العالم 2018 تعديل - تعديل مصدري - تعديل ويكي بيانات قوائم فرق كأس العالم لكرة القدم 2014، كما هو الحال مع في بطولة كأس العالم 2010، فكل منتخب مشارك في البط...

Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) SMA Negeri 5 PalembangInformasiDidirikan31 Oktober 1977JenisNegeriAkreditasiAKepala SekolahDrs.Taufik,M.SiJumlah kelas10 kelas setiap tingkatJurusan atau peminatanIPA...

 

Long-distance yachtswoman For the economic historian, see Ellen McArthur. DameEllen MacArthurDBEMacArthur in 2010Born (1976-07-08) 8 July 1976 (age 47)Whatstandwell, Derbyshire, EnglandOccupation(s)Sailor and charity founderKnown forPrevious holder of fastest solo circumnavigation of the globe in a yachtWebsiteellenmacarthur.com Dame Ellen Patricia MacArthur DBE (born 8 July 1976) is a retired English sailor, from Whatstandwell near Matlock in Derbyshire, now based in Cowes, Isle of...

 

1953 film Speed FeverDirected byEgil HolmsenWritten byEgil Holmsen Nils IdströmProduced byEwert GranholmStarringArne Ragneborn Sven-Axel Carlsson Erik BerglundCinematographySten DahlgrenEdited byRagnar EngströmMusic byHarry ArnoldProductioncompanySvensk TalfilmDistributed bySvensk TalfilmRelease date27 November 1953Running time105 minutesCountrySwedenLanguageSwedish Speed Fever (Swedish: Fartfeber) is a 1953 Swedish drama film directed by Egil Holmsen and starring Arne Ragneborn, Sven-Axel ...

Former naval fleet of the Royal Navy Battle Cruiser FleetWhite EnsignActive1915–1919CountryUnited KingdomAllegianceBritish EmpireBranchRoyal NavyTypeFleetEngagementsBattle of JutlandMilitary unit The Battle Cruiser Fleet, (BCF),[1] later known as Battle Cruiser Force, a naval formation of fast battlecruisers of the Royal Navy, operated from 1915 to 1919. History The Fleet was formed on 11 February 1915 when the Admiralty ordered the deployment of its faster Battlecruiser squadrons t...

 

Arvind V. ShahShah in 2018Born (1940-12-04) December 4, 1940 (age 83)Bombay, IndiaOccupation(s)Electronics Engineer, Educator, ScientistYears active1969-present Arvind Victor Shah (born 1940) is a Swiss electronics engineer, educator and scientist.[1] He founded the Centre For Electronics Design And Technology (CEDT) at the Indian Institute of Science, Bangalore, in 1974, where he was co-director during its first four years.[2] Thereafter, he became full professor fo...

 

Beijing International Challenger 2011 Sport Tennis Data 1º agosto - 5 agosto Edizione 2ª Località Pechino, Cina Campioni Singolare maschile Farruch Dustov Singolare femminile Hsieh Su-wei Doppio maschile Sanchai Ratiwatana / Sonchat Ratiwatana Doppio femminile Chan Hao-ching / Chan Yung-jan 2010 2012 Il Beijing International Challenger 2011 è stato un torneo professionistico di tennis giocato sul cemento. È stata la 2ª edizione del torneo maschile, la 2ª del torneo femminile, che fanno...

Polish chess player Witold BalcerowskiBalcerowski in 2001CountryPolandBorn(1935-08-10)10 August 1935Pinsk, PolandDied9 November 2001(2001-11-09) (aged 66)PolandTitleFIDE Master (1983) Witold Balcerowski (10 August 1935 – 9 November 2001) was a Polish chess player who twice won the Polish Chess Championship in 1962 and 1965. Chess career Balcerowski began playing chess at the age of 15. In 1952 Witold Balcerowski won the Polish Junior Chess Championships. However, the next few years he ...

 

Salisbury Police DepartmentJurisdictional structureOperations jurisdictionSalisbury, North Carolina, North Carolina, USAGeneral natureLocal civilian policeOperational structureHeadquartersSalisbury, North CarolinaAgency executiveJerry Stokes, ChiefWebsitesalisburync.gov/Government/Police The Salisbury Police Department is the primary law enforcement agency in the city of Salisbury, North Carolina in Rowan County.[1] The city has a population of about 34,000. The Salisbury Police Depar...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!