Управляемая ракета класса «воздух — воздух» (УР «В-В», также — УР ВВ, РВВ) — авиационная управляемая ракета, предназначенная для поражения летательных аппаратов. В англоязычной литературе обозначается как AAM (сокращение от англ.air-to-air missile). Первые управляемые ракеты данного класса появились в конце Второй мировой войны в Великобритании, Германии и США, хотя проекты оружия подобного рода разрабатывались ещё в 1930-х годах. Первая победа в воздушном бою с помощью управляемой ракеты «воздух — воздух» была одержана 24 сентября1958 года[1][прим. 1]. Ракеты «воздух — воздух» классифицируются по дальности и типу головки самонаведения.
Первый детально проработанный проект ракеты «воздух — воздух» был создан в Великобритании в 1943 году. «Артемида» имела полуактивное радиолокационное наведение с необычным коническим сканированием вращающейся головкой самонаведения. По экономическим причинам и ввиду очевидной деградации наступательных способностей Люфтваффе во второй половине войны проект не был реализован[2].
Интенсивные опыты по наведению авиационной ракеты на самолёт были предприняты в Германии во время Второй мировой войны[3]. Во время массированных налётов союзниковлюфтваффе столкнулось с недостаточной эффективностью поражения тяжёлых бомбардировщиков применявшимся пушечным авиационным вооружением, в результате чего стали разрабатывать очередное «чудо-оружие», способное уничтожить бомбардировщик с безопасного для самолёта-истребителя расстояния. Вначале на самолётах ПВО Германии для ударов по плотным построениям бомбардировщиков союзников применялись неуправляемые реактивные снаряды (НУРС) R4M[4]. Далее усилия немецких конструкторов привели к созданию опытных образцов специализированных ракет «воздух — воздух», таких как Ruhrstahl X-4[5].
США также занимались разработками УРВВ в годы Второй мировой, создав ракеты Hughes JB-3 Tiamat и Martin Gorgon как способ борьбы с германскими реактивными бомбардировщиками. Обе ракеты были сочтены морально устаревшими вскоре после войны и так и не были приняты на вооружение. Сразу же после войны (в 1946 году) ВВС США начали разработку новой ракеты, AAM-A-1 Firebird, но хотя ракета успешно прошла испытания в 1947—1949 годах, её характеристики были также сочтены недостаточными на фоне стремительно совершенствующейся реактивной авиации.
Сравнительные характеристики проектов УРВВ Второй мировой:
Послевоенные исследования привели к созданию ракеты «воздух — воздух» Fairey Fireflash, принятой на вооружение ВВС Великобритании в 1955 году. Однако, её использование оказалось малоэффективным[6]. ВВС и ВМС США приняли на вооружение ракеты «воздух — воздух» в 1956 году. Первой ракетой ВВС США стала AIM-4 Falcon; ВМС США получили сразу две ракеты — AIM-7 Sparrow[7] и AIM-9 Sidewinder, модификации которой стоят на вооружении до сих пор[8]. Первую ракету «воздух — воздух» РС-1У (К-5/Р-5) ВВС СССР приняли на вооружение в 1956 году[9].
24 сентября1958 года истребитель ВВС ТайваняF-86 атаковал МиГ-15ВВС Китая ракетой AIM-9B Sidewinder и сбил его. Эта победа считается первой, одержанной с помощью ракеты «воздух — воздух»[1]. К середине 1950-х годов возобладало мнение, что будущий воздушный бой сведётся лишь к обмену ракетными ударами между самолётами противоборствующих сторон на дальностях, превышающих видимость цели, поэтому созданные в начале 1960-х годов истребители (такие, как F-4) получили на вооружение только ракеты. Однако успешное применение устаревших истребителей с пушечным вооружением против новейших самолётов во время войны во Вьетнаме заставили пересмотреть взгляды на воздушный бой и вернуть в состав вооружения истребителей пушку[10]. Но ракета «воздух — воздух» так и осталась основным оружием воздушного боя[11].
Первые ракеты с инфракрасными ГСН могли захватить цель на автосопровождение только в задней полусфере, там, где тепловое излучение двигателей было наиболее сильным[12][13]. Но уже в Фолклендской войне дозвуковые британские «Харриеры» при помощи всеракурсных ракет с инфракрасной ГСН AIM-9L, полученных из США перед началом конфликта, одержали ряд побед над сверхзвуковыми истребителями «Мираж» III и «Даггер» аргентинских ВВС[14]. Современные ракеты «воздух — воздух» являются всеракурсными независимо от используемой ГСН.
Дальность действия
По дальности действия ракеты «воздух — воздух» разделяют на[15]:
малой дальности (англ.short-range AAM, SRAAM) — Предназначены для поражения ЛА в пределах визуального обнаружения цели; как правило, оснащены инфракрасными системами наведения.
средней дальности (англ.medium-range AAM, MRAAM) — Ракеты с дальностью до 100 км; как правило, имеют радиолокационную ГСН.
большой дальности (англ.long-range AAM, LRAAM) — Дальность действия более 100 км; оснащены комбинированной системой наведения, состоящей из инерциально-корректируемой и активной или полуактивной ГСН для наведения на конечном участке.
В англоязычной литературе ракеты малой дальности также обозначают как dogfight (AAM) или within visual range (WVRAAM), ракеты средней и большой дальности — как beyond visual range, BVRAAM.
В качестве дальности действия ракеты обычно указывают дальность полёта ракеты в идеальных условиях, что в некоторой степени вводит в заблуждение. Эффективная дальность полёта ракеты зависит от многих факторов: высоты пуска и цели, скорости самолёта носителя и цели, ракурса пуска и относительного местоположения цели и самолёта-носителя. Например, российская ракета Р-77 имеет дальность действия 100 км, однако такая дальность достигается только при пуске по неманеврирующей, находящейся в передней полусфере цели на большой высоте. При пуске на низкой высоте эффективная дальность пуска ракеты может составить только 20—25 % от максимальной. Если цель активно маневрирует или ракета пущена в заднюю полусферу уходящей скоростной цели, то эффективная дальность пуска может уменьшиться ещё больше. Эта зависимость в полной мере присуща всем ракетам «воздух — воздух»[16] (в англоязычной литературе эффективная дальность пуска, то есть дальность, при которой цель не сможет уклониться от выпущенной по ней ракеты, обозначается как no-escape zone).
Недостаточно подготовленные пилоты, как правило, пускают ракеты на максимальной дальности, естественно, с низким результатам. Во время эфиопо-эритрейской войны пилоты с обеих сторон выпустили массу ракет Р-27 (AA-10 Alamo) с большой дистанции с нулевым результатом. Однако, когда пилоты эфиопских истребителей Су-27 (после дополнительного инструктажа специалистов из бывшего СССР) начали сближаться с противником и атаковать эритрейские самолёты на малой дистанции с помощью ракет Р-73 (AA-11 Archer), они часто уничтожали цель[17].
Конструкция
Как правило, ракеты «воздух — воздух» имеют вытянутый цилиндрический корпус для снижения площади поперечного сечения ракеты, что уменьшает силу сопротивления воздуха при полёте на высоких скоростях.
В передней части ракеты расположена радиолокационная или инфракрасная головка самонаведения (ГСН). За ней расположено бортовое радиоэлектронное оборудование (БРЭО), которое управляет движением ракеты и наведением её на цель методом пропорциональной навигации. Сигналы управления ракетой формируются автопилотом на основании информации о движении цели от ГСН и информации от бортовых датчиков движения (датчики угловых скоростей и ускорений, линейных ускорений). Обычно за БРЭО находится боевая часть, состоящая из заряда взрывчатого вещества (ВВ) и одного или нескольких неконтактных взрывателей. Кроме того, в ракете монтируется контактный взрыватель для уничтожения ракеты в случае её падения на землю. Боевые части ракет бывают стержневыми и осколочно-фугасными[18]. На ракетах используют радиолокационные (активные и пассивные), лазерные и инфракрасные неконтактные взрыватели[19].
В задней части ракеты «воздух — воздух» находится, как правило, одно- или двухрежимный твердотопливный ракетный двигатель. На некоторых ракетах дальнего действия нашли применение многорежимные жидкостные ракетные двигатели и ракетно-прямоточные двигатели, которые позволяют экономить топливо для заключительной высокоманёвренной фазы полёта. Некоторые современные ракеты для заключительной фазы полёта имеют второй твердотопливный ракетный двигатель[19]. Например, разрабатываемая ракета MBDA Meteor для достижения высокой дальности полёта имеет двухдвигательную схему: для сближения с целью используется прямоточный реактивный двигатель, а на заключительном этапе — ракетный. Современные ракеты «воздух — воздух» используют бездымные ракетные двигатели, так как дымные «хвосты» первых ракет позволяли экипажу атакуемого самолёта издалека заметить запуск ракеты и уклониться от неё.
На корпусе ракеты, в зависимости от аэродинамической схемы, могут располагаться крылья. В качестве органов управления используются аэродинамические (с электрическим или гидравлическим приводом) или газовые рули. Аэродинамическими рулями могут быть собственно рули, поворотные крылья, элероны, роллероны или интерцепторы. Для повышения манёвренности ракет могут применять двигатели с отклоняемым вектором тяги. Источниками питания ракеты могут быть электрические или гидроаккумуляторы, газовые или пороховые аккумуляторы давления.
Система наведения
Управляемые ракеты пеленгуют радиолокационное или инфракрасное (ИК) излучение цели и сближаются с ней до подрыва боевого заряда. Как правило, боевая часть подрывается неконтактным взрывателем на некотором расстоянии от цели. Цель поражается либо осколками оболочки боевого заряда, либо стержнями, которые способны перерубить летательный аппарат. Для случаев прямого попадания ракета имеет контактный взрыватель[20].
Несмотря на то, что ракета использует бортовую РЛС или инфракрасный датчик для пеленгации цели, для обнаружения цели обычно используется оборудование самолёта-истребителя, причём целеуказание может быть получено разными способами. Ракеты с ИК ГСН могут получить целеуказание (направление на цель) от бортовой РЛС истребителя, а ракеты с радиолокационной ГСН могут быть запущены по целям, обнаруженным визуально или с помощью оптико-электронных систем целеуказания. Однако, им потребуется подсветка цели бортовой РЛС во время всего перехвата или начальной стадии, в зависимости от типа радиолокационной ГСН.
Радиокомандная (РК)
Первые ракеты «воздух — воздух» оснащались радиокомандной системой наведения. Пилот должен был управлять пущенной ракетой с помощью джойстика, установленного в кабине. Управляющие импульсы передавались на ракету сначала по проводам, затем — по радиоканалу. В хвостовой части ракеты с такой системой наведения обычно устанавливался трассёр. Ракеты с ручным управлением обладали крайне низкой вероятностью поражения цели[21].
В дальнейшем систему автоматизировали. Теперь истребитель формировал узкий радиолуч, направленный строго на цель. Ракета запускалась внутрь луча, где удерживалась автопилотом на основании сигналов от расположенных в задней части ракеты датчиков. До тех пор, пока истребитель удерживал луч на цели, ракета двигалась по направлению к ней. Относительно простая технически система оказалась очень сложной в эксплуатации, так как пилоту было очень сложно удерживать луч на цели, одновременно пилотируя самолёт и наблюдая за воздушным пространством, чтобы самому не стать объектом атаки. К тому же, истребителю не приходилось рассчитывать на прямолинейный, равномерный полёт цели во время наведения.
К-5 (СССР, управление автоматизированное, по радиолучу)[9]
AA.20 (Франция, управление ручное, по радиоканалу)[23]
Радиолокационная
Радиолокационная система наведения, как правило, используется в ракетах средней и большой дальности, так как на таких дистанциях инфракрасное излучение цели слишком мало́́ для уверенного сопровождения инфракрасной ГСН. Есть два типа радиолокационных головок самонаведения: активная и полуактивная.
Методы уклонения от ракет с радиолокационными ГСН включают активное маневрирование, отстрел дипольных отражателей и постановку помех системами РЭБ.
Активная радиолокационная (АРЛС)
Ракета с активной радиолокационной ГСН для слежения за целью имеет свою собственную РЛС с излучателем и приёмным устройством[24]. Тем не менее, дальность действия РЛС ракеты зависит от размера антенны, которая ограничена диаметром корпуса ракеты, поэтому ракеты с АРЛС ГСН используют дополнительные методы для сближения с целью на дистанцию действия бортовой РЛС. К ним относятся инерциально-корректируемый метод наведения и полуактивный радиолокационный.
Ракеты с полуактивной радиолокационной ГСН не имеют своего собственного излучателя. ПРЛС ГСН принимает отражённый от цели сигнал РЛС самолёта-носителя ракеты. Таким образом, для наведения ракеты с ПРЛС ГСН атакующий самолёт должен облучать цель до окончания перехвата, что ограничивает его манёвр. Ракеты с ПРЛС ГСН более чувствительны к помехам, чем ракеты с активной РЛС, так как радиолокационный сигнал при полуактивном наведении должен преодолеть большее расстояние.
Инфракрасная головка самонаведения наводится на тепло, излучаемое целью. Ранние варианты ИК ГСН имели низкую чувствительность, поэтому могли наводиться только на сопло работающего двигателя. Для использования такой ракеты атакующий самолёт должен был при её запуске находиться в задней полусфере цели[36]. Это ограничивало манёвр самолёта-носителя и диапазон применения ракеты. Низкая чувствительность ГСН также ограничивала и дистанцию пуска, так как тепловое излучение цели сильно уменьшалось с увеличением расстояния.
Современные ракеты с ИК ГСН являются всеракурсными, так как чувствительность инфракрасного датчика позволяет улавливать тепло, возникающее в процессе трения обшивки самолёта о воздушный поток. Вместе с повышенной манёвренностью ракет малой дальности это позволяет самолёту наносить удар по воздушной цели из любого положения, а не только из задней полусферы (однако, вероятность поражения цели ракетой, пущенной в заднюю полусферу, выше).
Основным средством противодействия ракетам с ИК ГСН являются отстреливаемые тепловые ловушки, тепловое излучение которых сильнее, чем излучение цели, поэтому ракеты теряют цель, наводясь на более яркий источник излучения. Также нашли применение различные постановщики помех в инфракрасном диапазоне и элементы конструкции, снижающие тепловое излучение двигателей. На большинстве военных вертолётов на выходных соплах двигателей установлены специальные «рассеиватели» теплового излучения, которые смешивают обегающий воздушный поток с выходным потоком двигателя, тем самым снижая его температуру. Для защиты от ракет с ИК ГСН разрабатываются различные лазерные системы, которые смогут лучом сбить систему наведения ракеты.
Тем не менее, наиболее совершенные ракеты с ИК ГСН, например, ASRAAM, имеют инфракрасную матрицу, формирующую инфракрасное изображение цели (как в тепловизоре), что позволяет ракете отличать летательный аппарат от точечных источников излучения тепловых ловушек[37][38][39]. К тому же, современные ИК ГСН имеют широкий угол обзора, поэтому пилоту теперь необязательно направлять свой самолёт строго на цель для пуска ракеты. Лётчику-истребителю достаточно взглянуть на цель, чтобы используя нашлемную систему целеуказания атаковать её ракетами с ИК ГСН. На российских истребителях МиГ-29 и Су-27 в дополнение к РЛС используется оптико-электронная система целеуказания, которая позволяет определять дальность до цели и наводить ракеты, не демаскируя себя включённым радаром.
Для увеличения манёвренности современные ракеты малой дальности оснащаются двигателями с управляемым вектором тяги и газовыми рулями, которые позволяют ракете развернуться по направлению к цели сразу после пуска, до того, как она наберёт скорость, достаточную для эффективного управления аэродинамическими поверхностями.
Последней появилась оптико-электронная система наведения. Ракета с ОЭ ГСН имеет оптико-электронную матрицу, работающую в видимом диапазоне. Система наведения такой ракеты может быть запрограммирована для поражения наиболее уязвимых элементов ЛА, например, кабины пилота. ОЭ ГСН не зависит от теплового излучения цели, поэтому может применяться по малозаметным в ИК диапазоне целям.
Для сравнительной оценки эффективности ракет «воздух — воздух» применяют ряд следующих характеристик.
Эффективная дальность пуска по неманеврирующей цели
Дальность пуска по цели, которая не подозревает об атаке и не производит каких-либо манёвров уклонения, с высокой вероятностью её поражения. В англоязычной литературе называется Launch Success Zone.
Максимальная наклонная дальность
Максимальное прямое расстояние между самолётом-носителем и целью: чем оно больше у данной ракеты, тем больше вероятность поразить ею цель. В англоязычной литературе называется F-Pole.
Эффективная дальность пуска
Дальность пуска, при которой достигается высокая вероятность поражения активно уклоняющейся цели. Диапазон эффективных дальностей обычно имеет коническую форму, которая зависит от типа ракеты. Длина конуса зависит от скорости и дальности полёта ракеты, а также чувствительности ГСН. Диаметр воображаемого конуса определяется манёвренностью ракеты и угловыми скоростями поворота ГСН. В англоязычной литературе диапазон эффективных пусков называют No-Escape Zone.
Точность самонаведения
Вероятность попадания в круг заданного радиуса. Ракеты с радиолокационной ГСН имеют вероятность 0,8—0,9 попадания в круг радиусом 10 м. Ракеты с инфракрасной ГСН более точные и при той же вероятности попадают в круг радиусом 3—5 м. Ошибки самонаведения ракеты имеют случайный и динамический характер. Первые связаны с шумами сигнала (шумы электронной аппаратуры, помехи, угловые флуктуации сигнала), вторые возникают из-за противоракетного маневрирования цели и сбоев в аппаратуре наведения.
Поколения ракет малой дальности
Ракеты «воздух — воздух» малой дальности классифицируются на поколения в соответствии с используемыми при их создании технологиями.
Первое поколение
Ранние ракеты малой дальности, такие как первые модификации AIM-9 и К-13 (AA-2 Atol), имели неподвижную инфракрасную ГСН с узким полем обзора в 30° и требовали при запуске занять позицию точно позади цели. Атакуемому самолёту достаточно было совершить незначительный манёвр, чтобы выйти из поля обзора ГСН ракеты, в результате чего ракета теряла цель. К ракетам первого поколения относятся:
К нему относят ракеты с инфракрасной ГСН с увеличенным до 45° полем обзора.
Третье поколение
Увеличение чувствительности инфракрасных датчиков привело к появлению всеракурсных ракет «воздух — воздух» с инфракрасной ГСН. Несмотря на то, что угол обзора ГСН всё ещё был ограничен относительно узким конусом, всеракурсные ГСН позволили атакующему самолёту наводить ракеты с любого ракурса, а не только из задней полусферы. К ракетам третьего поколения относятся:
Советская ракета Р-73 (AA-11 Archer), принятая на вооружение в 1983 году, стала первой ракетой малой дальности четвёртого поколения благодаря инфракрасной ГСН с аналоговым устройством сканирования в фокальной плоскости (матрицей). ГСН такого типа имеет лучшую защиту от создаваемых тепловыми ловушками помех и угол обзора более 60°. Для наилучшего использования возможностей таких ракет, которые превысили возможности современных РЛС, на самолёты стали устанавливать нашлемные системы целеуказания. Наиболее совершенные ракеты четвёртого поколения имеют угол обзора ГСН 120° и двигатели с управляемым вектором тяги. К ракетам четвёртого поколения относятся:
Ракеты последнего поколения получили ГСН с цифровой инфракрасной матрицей, которая позволяют формировать цифровое инфракрасное изображение цели в системе управления ракеты. Как правило, такая ГСН комбинируется с электронной системой обработки данных, которая обеспечивает лучшую помехозащищённость ракеты, большую точность попадания и увеличенную чувствительность ГСН, что в свою очередь позволяет увеличить дальность захвата на автосопровождение и эффективность действия по малым БПЛА. К ракетам пятого поколения относятся:
Марковский В., Перов К. Советские авиационные ракеты «воздух — воздух». — М.: ЭКСПРИНТ, 2005. — ISBN 5-94038-084-0.
Нестеров В. А., Пейсах Э. Е., Рейдель А. Л. и др. Основы проектирования ракет класса «воздух — воздух» и авиационных катапультных установок для них / Под общей редакцией Нестерова В. А. — М.: Издательство МАИ, 1999. — 792 с. — ISBN 5-7035-1949-7.
Авиация: Энциклопедия / Гл. ред. Г. П. Свищёв. — М.: Большая Российская энциклопедия, 1994. — 736 с. — ISBN 5-85270-086-X.
Миропольский Ф. П. и др. Авиационные средства поражения. — М.: Военное издательство, 1995. — 255 с.
Гладков Д. И. и др. Боевая авиационная техника: Авиационное вооружение. — М.: Военное издательство, 1987. — 279 с.
Jeremy Flack. Lenk- und Abwurfwaffen der NATO-Luftwaffen. — Motorbuch Verlag, 2005. — 113 p. — ISBN 3-613-02525-6.
Шахта імені Фрунзе Країна УкраїнаРозташування Покровський район 48°00′19″ пн. ш. 33°26′17″ сх. д. / 48.00527777780577310° пн. ш. 33.43805555558377307° сх. д. / 48.00527777780577310; 33.43805555558377307Координати: 48°00′19″ пн. ш. 33°26′17″ сх. д. / 48.00527777780577310° пн.&...
Кілійський район ліквідована адміністративно-територіальна одиниця Герб Прапор Колишній район на карті Ізмаїльська область → Одеська область Основні дані Країна: СРСР ( УРСР) → Україна Область: Ізмаїльська область → Одеська область Код КОАТУУ: 5122300000 Утв
Justizvollzugsanstalt Herford Informationen zur Anstalt Name Justizvollzugsanstalt Herford Bezugsjahr 1882 Haftplätze 355[1] Mitarbeiter 240[2] Anstaltsleitung Friedrich Waldmann Die Justizvollzugsanstalt Herford ist die zweitgrößte der vier Strafanstalten des geschlossenen Vollzugs für Jugendliche in Nordrhein-Westfalen. Sie verfügt über 355 Haftplätze.[3] Das Gelände der Justizvollzugsanstalt Herford liegt in der Neustädter Feldmark zwischen der Werrestraße...
De Ronde van Slowakije 2006 (Slowaaks: Okolo Slovenska 2006) was de 50e editie van deze rittenkoers, die begon op 30 augustus en eindigde op 3 september. Etappe-overzicht etappe datum start finish afstand winnaar klassementsleider 1e 30 augustus Stropkov Stropkov 135.1 km Kristoffer Gudmund Nielsen Kristoffer Gudmund Nielsen 2e 31 augustus Sabinov Tatranská Lomnica 143.9 km Grega Bole 3e 1 september Štrba Banská Štiavnica 180.5 km Søren Nissen 4e (a) 2 september Banská Belá Banská Št...
Trinidad MunicipioBanderaEscudo TrinidadLocalización de Trinidad en Colombia TrinidadLocalización de Trinidad en CasanareCoordenadas 5°24′33″N 71°39′40″O / 5.4091666666667, -71.661111111111Entidad Municipio • País Colombia • Departamento CasanareAlcalde Jesús Nolberto Monroy Moreno(2020-2023)Eventos históricos • Fundación 12 de febrero de 1724[1] • Erección [1]Superficie • Total 2991 km²[1]...
Ravi ZachariasLahir(1946-03-26)26 Maret 1946Chennai, Kepresidenan Madras, India BritaniaMeninggal19 Mei 2020(2020-05-19) (umur 74)Atlanta, Georgia, Amerika Serikat.Tempat tinggalAtlanta, Georgia, Amerika SerikatWarga negaraKanadaAmerika SerikatPekerjaanApologis Kristen, Pendiri dan Presiden Direktur Ravi Zacharias International MinistriesLatar belakang akademisAlma materTrinity International UniversityKarya akademisEraFilsafat abad ke-21AliranFilsafat KristenMinat utamaFilsafat agama, Ap...
Post-hardcoreUnderoath pada tahun 2005. Dari kiri, vokalis Spencer Chamberlain, bassis Grant Brandell, gitaris James Smith dan drummer Aaron GillespieSumber aliranHardcore punkpunk rockpost-punknoise rockSumber kebudayaan1980-an, Amerika SerikatBentuk turunan Blackgaze[1] mathcore math rock post-metal Subgenre Emo (screamo) Nintendocore[2] Versi regional Texas Wales Selatan Versi lokal Chicago Olympia San Diego Washington D.C. Topik lainnya Art punk avant-punk daftar grup musi...
UFC MMA events in 2003 2003 in UFCInformationFirst dateFeb 28, 2003Last dateNov 21, 2003EventsTotal events5UFC5FightsTotal fights41Title fights6Chronology 2002 in UFC 2003 in UFC 2004 in UFC The year 2003 was the 11th year in the history of the Ultimate Fighting Championship (UFC), a mixed martial arts promotion based in the United States. In 2003, the UFC held five events beginning with UFC 41: Onslaught. Title fights Title fights in 2003 Weight class Method Round Time Event Notes Welterweig...
It has been suggested that Sister Elizabeth Maternity Hospital be merged into this article. (Discuss) Proposed since August 2023. This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (May 2021) (Learn how and when to remove this template message) Hospital in New York, United StatesNYU Langone Hospital – BrooklynNYU ...
1993 film by Woody Allen Manhattan Murder MysteryTheatrical release posterDirected byWoody AllenWritten by Woody Allen Marshall Brickman Produced byRobert GreenhutStarring Alan Alda Woody Allen Anjelica Huston Diane Keaton CinematographyCarlo Di PalmaEdited bySusan E. MorseDistributed byTriStar PicturesRelease date August 18, 1993 (1993-08-18) (United States) Running time107 minutesCountryUnited StatesLanguageEnglishBudget$13.5 million (est.)Box office$11.2 million (United ...
2008 video gameThe Sims 2: Apartment PetsPAL region cover art for DSDeveloper(s)Full FatPublisher(s)Electronic ArtsSeriesThe SimsPlatform(s)Nintendo DSReleaseNA: August 26, 2008AU: August 28, 2008EU: August 29, 2008Genre(s)Life simulation game, God gameMode(s)Single-player The Sims 2: Apartment Pets is a video game for the Nintendo DS. EA has described as a follow-up to the Nintendo DS version of The Sims 2: Pets. As in the original, it allows a diverse amount of customization, allowing pets ...
1826 play The French LibertineRichelieu, the inspiration for the play.Written byJohn Howard PayneDate premiered11 February 1826Place premieredTheatre Royal, Covent Garden, LondonOriginal languageEnglishGenreHistoricalSettingParis, 18th century The French Libertine is an 1826 historical play by the British-based American writer John Howard Payne. Written under the title Richelieu the play originally focused on the life of the eighteenth century French aristocrat and libertine the Duke of Riche...
Harry C. MyersMyers dalam A Connecticut Yankee in King Arthur's Court (1921)Lahir(1882-09-05)5 September 1882New Haven, Connecticut, Amerika SerikatMeninggal25 Desember 1938(1938-12-25) (umur 56)Hollywood, California, Amerika SerikatPekerjaanPemeranSutradaraTahun aktif1908–1938Suami/istriRosemary Theby (m.1915) Harry C. Myers (5 September 1882 – 25 Desember 1938) adalah seorang pemeran dan sutradara asal Amerika Serikat, yang terkadang disebut sebagai Henry Myers. ...
Late modernist style of architecture Mark Taper Forum, Los Angeles, designed by Welton Becket and Associates, 1967 The now destroyed original World Trade Center in New York City, designed by Minoru Yamasaki with Emery Roth & Sons associates, 1966 New Formalism is an architectural style that emerged in the United States during the mid-1950s and flowered in the 1960s. Buildings designed in that style exhibited many Classical elements including strict symmetrical elevations[1] buildi...
TaguatingaDatos generalesNombre Taguatinga Esporte ClubeApodo(s) ÁguilaTECFundación 18 de febrero de 1964 (59 años)[1]Refundación 2015Presidente Edmilson MarçalEntrenador Júnior Araújo[2]InstalacionesEstadio Serejão[3]Capacidad 27 000 espectadores[4]Ubicación Taguatinga, BrasilUniforme Titular Alternativo Última temporadaLiga Campeonato Brasiliense(2023) 9.º Títulos 5 (por última vez en 1993) Página web oficial[editar datos en Wikidata&...
У Вікіпедії є статті про інші значення цього терміна: Холодна війна (значення). Холодна війнапол. Zimna wojna Український постер до фільмуЖанр драма, мелодрамаРежисер Павел ПавліковськийПродюсери Ева ПущинськаТаня СегачянСценаристи Павел ПавліковськийЯнуш ҐловацькийПйотр...
Senate composition at 1 July 1956 Government (30) - (1 seat minority)[i] Liberal (24) Country Party (6) [ii] Opposition (28) Labor (28) [i] [iii] Crossbench (2) ALP (Anti-Communist)/DLP (2) [iv] Changes in composition ^ a b At the November 1958 election Labor senator James Ormonde was elected to a full term seat, from 1 July 1959 to 30 June 1965 and Country Party candidate Colin McKellar was elected to fill the casual ...
This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (February 2018) 2011 American filmNo One LivesDirected byRyuhei KitamuraWritten byDavid CohenProduced byHarry KnappKami NaghdiStarring Luke Evans Adelaide Clemens Lee Tergesen Laura Ramsey Derek Magyar Beau Knapp America Olivo Brodus Clay Lindsey Shaw CinematographyDaniel PearlEdited byToby YatesMusic...
Airport terminal at London Heathrow Airport Heathrow Terminal 3Entrance to the departures area at Terminal 3Location within Greater LondonAlternative namesThe Oceanic TerminalGeneral informationTypeAirport terminalCoordinates51°28′15″N 0°27′36″W / 51.470833°N 0.46°W / 51.470833; -0.46Inaugurated13 November 1961Renovated1987–19902007ClientHeathrow Airport Holdings Heathrow Terminal 3 is an airport terminal at Heathrow Airport, serving London, the capital c...