Теорема Адамара — Картана — утверждение о том, что универсальное накрытие риманова многообразия с неположительной кривизной диффеоморфно евклидову пространству.
Для поверхностей в евклидовом пространстве теорема была доказана Гансом фон Мангольдтом в 1881 году[1], и независимо Жаком Адамаром в 1898 году[2]. Общий случай был доказан Эли Картаном в 1928 году[3].
Обобщения на метрические пространства в разной общности были получены Гербертом Буземаном[4][5] и Вилли Риновом[6], Михаилом Громовым[7], а также Стефани Александер и Ричардом Бишопом[8].
Теорема Картана — Адамара утверждает, что пространство универсального накрытия связного полного риманова многообразия неположительной секционной кривизны диффеоморфно евклидову пространству. Более того, экспоненциальное отображение в любой точке является диффеоморфизмом.
Предположение о неположительной кривизны может быть ослаблено[8]. Назовём метрическое пространство X выпуклым, если для любых двух геодезических a(t) и b(t) функция
является выпуклой функцией от t. Метрическое пространство называется локально выпуклым, если каждая его точка имеет окрестность, которая является выпуклой в этом смысле. Теорема Картана — Адамара для локально выпуклых пространств формулируется следующим образом: