Произвольного ранга n — тензорная степень n любого вектора/ковектора (лишь одна из возможностей).
Последний пример показывает, что, в отличие от антисимметричного случая, пространство симметричных тензоров будет иметь положительную размерность при сколь угодно большом числе симметризуемых индексов.
Применение
Симметричные ковариантные тензоры возникают при разложении в ряд Тейлора функции, заданной на линейном пространстве — член степени n является симметричным n-линейным функционалом, то есть его «коэффициентом» является абсолютно симметричный тензор ранга n.
В квантовой механике симметричный по n индексам тензор описывает n-частичное состояние бозона.
Когда состояние описывается волновой функцией, волновые функции от многих переменных математически могут рассматриваться как бесконечномерные тензоры (каждый аргумент соответствует индексу). Симметричная функция удовлетворяет уравнению и аналогично для большего числа переменных.