В основе кодирования звука с использованием ПК лежит процесс преобразования колебаний воздуха в колебания электрического тока и последующая дискретизация аналогового электрического сигнала. Кодирование и воспроизведение звуковой информации осуществляется с помощью специальных программ (редактор звукозаписи). Качество воспроизведения закодированного звука зависит от частоты дискретизации и её разрешения (глубины кодирования звука — количество уровней).
Цифровой звук — аналоговый звуковой сигнал, представленный посредством дискретных численных значений его амплитуды[1].
Оцифровка звука — технология осуществления замеров амплитуды звукового сигнала с определенным временным шагом и последующей записи полученных значений в численном виде[1]. Другое название оцифровки звука — аналогово-цифровое преобразование звука.
Оцифровка звука включает в себя два процесса:
Процесс дискретизации по времени — процесс получения значений сигнала, который преобразуется с определенным временным шагом — шагом дискретизации . Количество замеров величины сигнала, осуществляемых в единицу времени, называют частотой дискретизации или частотой выборки, или частотой семплирования (от англ. «sampling» — «выборка»). Чем меньше шаг дискретизации, тем выше частота дискретизации и тем более точное представление о сигнале нами будет получено.
Это подтверждается теоремой Котельникова (в зарубежной литературе встречается как теорема Найквиста — Шеннона). Согласно ей, аналоговый сигнал с ограниченным спектром точно описуем дискретной последовательностью значений его амплитуды, если эти значения берутся с частотой, как минимум вдвое превышающей наивысшую частоту спектра сигнала. То есть, аналоговый сигнал, в котором находится частота спектра равная Fm, может быть точно представлен последовательностью дискретных значений амплитуды, если для частоты дискретизации Fd выполняется: Fd>2Fm.
На практике это означает, что для того, чтобы оцифрованный сигнал содержал информацию о всем диапазоне слышимых частот исходного аналогового сигнала (20 Гц — 20 кГц) необходимо, чтобы выбранное значение частоты дискретизации составляло не менее 40 кГц. Количество замеров амплитуды в секунду называют частотой дискретизации (в случае, если шаг дискретизации постоянен).
Основная трудность оцифровки заключается в невозможности записать измеренные значения сигнала с идеальной точностью (хотя исходя из теоремы Шенона и Котельникова это возможно).
Отведём для записи одного значения амплитуды сигнала в памяти компьютера N бит. Значит, с помощью одного N -битного слова можно описать 2N разных положений. Пусть амплитуда оцифровываемого сигнала колеблется в пределах от −1 до 1 некоторых условных единиц. Представим этот диапазон изменения амплитуды — динамический диапазон сигнала — в виде 2N −1 равных промежутков, разделив его на 2N уровней — квантов. Теперь для записи каждого отдельного значения амплитуды его необходимо округлить до ближайшего уровня квантования. Этот процесс носит название квантования по амплитуде. Квантование по амплитуде — процесс замены реальных значений амплитуды сигнала значениями, приближенными с некоторой точностью. Каждый из 2 N возможных уровней называется уровнем квантования, а расстояние между двумя ближайшими уровнями квантования называется шагом квантования. Если амплитудная шкала разбита на уровни линейно, квантование называют линейным (однородным).
Точность округления зависит от выбранного количества (2N) уровней квантования, которое, в свою очередь, зависит от количества бит (N), отведенных для записи значения амплитуды. Число N называют разрядностью квантования (подразумевая количество разрядов, то есть бит, в каждом слове), а полученные в результате округления значений амплитуды числа — отсчетами, или семплами (от англ. «sample» — «замер»). Принимается, что погрешности квантования, являющиеся результатом квантования с разрядностью 16 бит, остаются для слушателя почти незаметными.
Этот способ оцифровки сигнала — дискретизация сигнала во времени в совокупности с методом однородного квантования — называется импульсно-кодовой модуляцией (англ. Pulse Code Modulation — PCM). Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. В случае, когда записываются абсолютные значения амплитуды, такой формат записи называется PCM. Стандартный аудио компакт-диск (CD-DA), применяющийся с начала 1980-х годов, хранит информацию в формате PCM с частотой дискретизации 44,1 кГц и разрядностью квантования 16 бит.
Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями (АЦП). Это преобразование включает в себя следующие операции:
Делается это следующим образом: непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, который проходит процесс квантования с определенной разрядностью, а затем кодируется, то есть заменяется последовательностью кодовых символов. Для записи звука в полосе частот 20 Гц — 20 кГц, требуется частота дискретизации от 44,1 кГц и выше. Для получения качественной записи достаточно разрядности 16 бит, однако для расширения динамического диапазона и повышения качества звукозаписи используется разрядность 24 и 32 бита.
Для хранения цифрового звука существует много различных способов. Оцифрованный звук являет собой набор значений амплитуды сигнала, взятых через определенные промежутки времени.
Помехоустойчивое кодирование позволяет при воспроизведении сигнала выявить и устранить (или снизить частоту их появления) ошибки чтения с носителя. Для этого при записи к сигналу, полученному на выходе АЦП, добавляется искусственная избыточность (контрольный бит), которая впоследствии помогает восстановить поврежденный отсчет. В устройствах записи звука обычно используется комбинация из двух или трех помехоустойчивых кодов. Для лучшей защиты от пакетных ошибок также применяется перемежение.
Канальное кодирование служит для согласования цифровых сигналов с параметрами канала передачи (записи/воспроизведения). К полезному сигналу добавляются вспомогательные данные, которые облегчают последующее декодирование. Это могут быть сигналы временного кода, служебные сигналы, сигналы синхронизации.
В устройствах воспроизведения цифровых сигналов канальный декодер выделяет из общего потока данных тактовые сигналы и преобразует поступивший канальный сигнал в цифровой поток данных. После коррекции ошибок сигнал поступает в ЦАП.
Цифровой сигнал, полученный с декодера, преобразовывается в аналоговый. Это преобразование происходит следующим образом:
Основными параметрами, влияющими на качество звука при этом являются:
Также немаловажными остаются параметры аналогового тракта цифровых устройств кодирования и декодирования:
Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых выделяют два основных направления: метод FM и метод Wave-Table.
Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых будет представлять собой правильную синусоиду, а это значит, что его можно описать кодом. Процесс разложения звуковых сигналов в гармонические ряды и их представление в виде дискретных цифровых сигналов происходит в специальных устройствах, которые называют «аналогово-цифровые преобразователи» (АЦП).
Таблично-волновой метод (Wave-Table) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.