Упаковка тетраэдров — это задача расположения одинаковых правильных тетраэдров в трёхмерном пространстве так, чтобы заполнить как можно большую долю пространства.
На настоящее время лучшей границей плотности упаковки, полученной для оптимальной упаковки правильных тетраэдров, является число 85,63 %[1]. Тетраэдры не замощают пространство[2] и, как известно, верхняя граница заполнения находится ниже 100 % (а именно, 1 − (2,6…)·10−25) [3].
Аристотель утверждал, что тетраэдры должны заполнять пространство полностью[4].
В 2006 году Конвей и Торквато показали, что плотность упаковки около 72 % может быть получена построением решётки тетраэдров, не являющейся решёткой Браве (с несколькими частями, имеющими различную ориентацию), и показали, что лучшая упаковка тетраэдров не может быть решёточной упаковкой (с одним элементом на повторяющийся блок и когда каждый элемент имеет одну и ту же ориентацию)[5]. Эти построения почти удваивают оптимальную плотность упаковки на основе решётки Браве, которую получил Хойлман и плотность которой равна 36,73 %[6]. В 2007 и 2010 годах Чайкин с коллегами показали, что похожие на тетраэдр тела могут быть случайным образом упакованы в конечный контейнер с плотностью упаковки между 75 % и 76 %[7]. В 2008 году Чен первой предложила упаковку правильных тетраэдров, которая плотнее упаковки сфер, а именно, 77,86 %[8][9]. Улучшения сделали Торквато и Цзяо в 2009 году, сжав конструкцию Чен с помощью компьютерного алгоритма и получив долю упаковки 78,2021 %[10].
В середине 2009 года Хаджи-Акбари с соавторами показали, используя метод Монте-Карло для первоначально случайной системы с плотностью упаковки >50 %, что равновесный поток твёрдых тетраэдров спонтанно преобразуется в двенадцатиугольный квазикристалл, который может быть сжат до 83,24 %. Они также описали хаотическую упаковку с плотностью, превосходящей 78 %. Для периодической аппроксимации квазикристаллами с ячейкой из 82 тетраэдров они получили плотность упаковки 85,03 %[11].
В конце 2009 года новое, более простое семейство упаковок с плотностью 85,47 % открыли Каллус, Элзер и Гравел[12]. На основе этих упаковок, слегка их улучшив, Торквато и Цзяо в конце 2009 года получили и плотность 85,55 %[13]. В начале 2010 года Чен, Энгел и Глотцер получили плотность 85,63 %[1], и сейчас этот результат является самой плотной упаковкой правильных тетраэдров.
Связь с другими задачами упаковки
Поскольку ранние известные границы плотности упаковки тетраэдров были меньше упаковки шаров, было высказано предположение, что правильный тетраэдр может быть контрпримером гипотезе Улама[англ.], что оптимальная плотность упаковки одинаковых шаров меньше плотности упаковки любого другого тела. Более поздние исследования показали, что это не так.
Amir Haji-Akbari, Michael Engel, Aaron S. Keys, Xiaoyu Zheng, Rolfe G. Petschek, Peter Palffy-Muhoray, Sharon C. Glotzer. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedral // Nature. — 2009. — Т. 462, вып. 7274. — С. 773–777. — doi:10.1038/nature08641. — Bibcode: 2009Natur.462..773H. — arXiv:1012.5138. — PMID20010683.
Torquato, S.; Jiao, Y. (2009). "Analytical Constructions of a Family of Dense Tetrahedron Packings and the Role of Symmetry". arXiv:0912.4210 [cond-mat.stat-mech].