Связность позволяет дифференцировать сечения расслоения по направлению.
Связность позволяет определить параллельное сечение вдоль кривой в базе расслоения. В частности связность позволяет построить каноническую тривиализацию расслоения над кривой (не имеющей самопересечений), однако построить для расслоения над многообразием каноническую тривиализацию в некоторой окрестности возможно тогда и только тогда, когда там равен нулю тензор кривизны заданной связности. На физическом языке в терминах пространства-времени это говорит, что можно ввести локально лоренцеву систему отсчёта вдоль произвольной несамопересекающейся кривой, но невозможно в окрестности точки, если тензор кривизны этой окрестности отличен от нуля.
Название связность происходит от того, что посредством неё связываютсякасательные пространства в разных точках многообразия. Именно связность организовывает структуру касательного расслоения. Проще говоря, связность позволяет переносить геометрические объекты из одной точки многообразия в другую и необходима для сравнения объектов в разных точках многообразия.