Праймориал, примориал (англ. Primorial) — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Термин «праймориал» ввёл в научный оборот американский инженер и математик Харви Дабнер[англ.] в 1987 году[1].
Для n-го простого числа pn праймориал pn# определён как произведение первых n простых чисел[2][3]:
где pk — k-е простое число.
Например, p5# обозначает произведение первых 5 простых чисел:
Таким образом, первые шесть праймориалов:
Асимптотически праймориалы pn# растут в соответствии с
где o ( ⋅ ) {\displaystyle o(\cdot )} является нотацией «o» малого[3].
В общем случае для целого положительного числа n праймориал n# может быть определён как произведение простых чисел, меньших или равных n[2][4]:
где π ( n ) {\displaystyle \pi (n)} является функцией распределения простых чисел (последовательность A000720 в OEIS), дающая количество простых чисел ≤ n, что эквивалентно
Например, 12# представляет собой произведение простых чисел, каждое из которых ≤ 12:
Таким образом, π ( 12 ) = 5 {\displaystyle \pi (12)=5} может быть вычислено как
Рассмотрим первые 12 праймориалов:
Мы видим, что для составных чисел каждый член данной последовательности просто дублирует предыдущий. В приведенном выше примере мы имеем, что 12# = p5# = 11#, поскольку 12 является составным числом.
Натуральный логарифм n# — это первая функция Чебышева, записанная в виде θ ( n ) {\displaystyle \theta (n)} или ϑ ( n ) {\displaystyle \vartheta (n)} , что приближается к линейной n для больших значений n[5].
Праймориалы n# растут в соответствии с
Праймориалы играют важную роль в поиске простых чисел в арифметических прогрессиях из простых чисел. Например, сложение чисел 2236133941 + 23# даёт в результате простое число, начинающее последовательность из тринадцати простых чисел, которые можно получить, последовательно прибавляя 23#, и заканчивающуюся числом 5136341251. 23# является также общей разностью в арифметических прогрессиях из пятнадцати и шестнадцати простых чисел.
Каждое многосоставное число можно представить в виде произведения праймориалов (например, 360 = 2 · 6 · 30)[6].
Все праймориалы являются бесквадратными числами, и каждый из них имеет простые делители любого числа меньшего, чем праймориал. Для каждого праймориала n отношение ϕ ( n ) / n {\displaystyle \phi (n)/n} меньше, чем для любого целого числа, где ϕ {\displaystyle \phi } является функцией Эйлера.
Каждый праймориал является слабо тотиентным числом[англ.][7].
Дзета-функция Римана для положительных чисел, больших единицы, может быть выражена[8] с использованием праймориала и функции Жордана J k ( n ) {\displaystyle J_{k}(n)} :
Композиториал числа n в отличие от праймориала является произведением составных чисел, меньших или равных n. Композиториал равен отношению факториала и праймориала числа: n ! / n # {\displaystyle n!/n\#} . Первые пятнадцать композиториалов (исключая повторяющиеся значения) равны 1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000[9][10][11].