Правила квантования в ранних методах квантовой теории поля в большей степени были набором практических эвристик («рецептов»), нежели строгой системой. Особенно это касается случая неабелевых калибровочных теорий, где использование «духов Фаддеева — Попова» с причудливыми свойствами просто необходимо по некоторым техническим причинам, связанным с ренормализацией и некорректным сокращением.
BRST-суперсимметрия была изобретена в середине 1970-х и довольно быстро воспринята сообществом как способ строгого обоснования для введения духов Фаддеева — Попова и их исключения из физических асимптотик при вычислениях. Несколько лет спустя в работе другого автора[уточнить] была показано, что BRST-оператор свидетельствует о существовании формальной альтернативы интеграла по путям при квантовании калибровочной теории.
Только в конце 1980-х готов, когда квантовая теория поля была сформулирована в терминах расслоений для возможности решения топологических проблем многообразий низкой размерности (теория Дональдсона), стало очевидно, что по своему характеру BRST-преобразование является фундаментально геометрическим. В таком свете «BRST-квантование» становится не просто способом добиться аномально сокращающихся гостов[уточнить]. Это другой взгляд на то, что собой представляют поля-духи, почему справедлив метод Фаддеева — Попова и как он связан с использованием гамильтоновой механики при конструировании модели возмущений. Соотношение между калибровочной инвариантностью и «BRST-инвариантностью» ограничивает выбор гамильтоновых систем, чьи состояния состоят из «частиц» в соответствии с правилами канонического квантования. Эта неявная согласованность подходит довольно близко к объяснению, откуда в физике появляются кванты и фермионы.
Chapter 16 of Peskin & Schroeder (ISBN 0-201-50397-2 or ISBN 0-201-50934-2) applies the «BRST symmetry» to reason about anomaly cancellation in the Faddeev-Popov Lagrangian. This is a good start for QFT non-experts, although the connections to geometry are omitted and the treatment of asymptotic Fock space is only a sketch.
Becchi C., Rouet A. and Stora R. The abelian Higgs Kibble model, unitarity of the S-operator // Phys. Lett. B. — 1974. — Vol. 52. — P. 344. — doi:10.1016/0370-2693(74)90058-6.
C. Becchi, A. Rouet and R. Stora, Commun. Math. Phys. 42 (1975) 127.
Более приемлемая версия статьи Kugo-Ojima доступна в сети в виде серии статей, первая: T. Kugo, I. Ojima, «Manifestly Covariant Canonical Formulation of the Yang-Mills Field Theories. I», Progr. Theor. Phys. 60, 6 (1978) pp. 1869–1889. Вероятно, лучшая работа, излагающая BRST-квантование с квантовомеханической (а не геометрической) точи зрения.
Подробности о взаимоотношении между топологическими инвариантами и BRST-оператором можно найти в : E. Witten, «Topological quantum field theory», Commun. Math. Phys. 117, 3 (1988), pp. 353–386