Esta página ou seção foi marcada para revisão devido a incoerências ou dados de confiabilidade duvidosa. Se tem algum conhecimento sobre o tema, por favor, verifique e melhore a coerência e o rigor deste artigo. Pode encontrar ajuda no WikiProjeto Física. Se existir um WikiProjeto mais adequado, por favor corrija esta predefinição.
(Setembro de 2020)
Esta cronologia do Universo ou cronologia do Big Bang descreve na história do Universo e seu futuro de acordo com cosmologia do Big Bang. Os estágios iniciais da existência do universo são estimados em 13,8 bilhões de anos atrás, com uma incerteza de cerca de 21 milhões de anos no nível de confiança de 68%.[4]
Esboço
Cronologia em cinco estágios
Para os propósitos deste resumo, é conveniente dividir a cronologia do universo desde que se originou, em cinco partes. Geralmente, é considerado sem sentido ou incerto se o tempo existia antes desta cronologia:
Acredita-se que pequenas ondulações no universo, nesta fase, sejam a base de estruturas de larga escala que se formaram muito mais tarde. Diferentes estágios do universo primitivo são compreendidos em diferentes extensões. As partes anteriores estão além do alcance de experimentos práticos em física de partículas, mas podem ser exploradas por outros meios.
Com duração de cerca de 370 mil anos. Inicialmente, vários tipos de partículas subatômicas são formados em estágios. Essas partículas incluem quantidades quase iguais de matéria e antimatéria; portanto, a maioria aniquila rapidamente, deixando um pequeno excesso de matéria no universo.
Em 20 minutos, o universo não está mais quente o suficiente para a fusão nuclear, mas é quente demais para que átomos neutros existam ou fótons viajem para longe. Portanto, é uma plasmaopaca. Em cerca de 47 mil anos,[5] à medida que o universo esfria, seu comportamento começa a ser dominado pela matéria e não pela radiação. Em cerca de 100 mil anos, o hidreto de hélio é a primeira molécula. (Muito mais tarde, o hidrogênio e o hidreto de hélio reagem para formar hidrogênio molecular, o combustível necessário para as primeiras estrelas.)
Em cerca de 370 mil anos,[6] o universo finalmente se torna frio o suficiente para formar átomos neutros ("recombinação") e como resultado, também se torna transparente pela primeira vez. Os átomos recém-formados–principalmente hidrogênio e hélio com traços de lítio–atingem rapidamente seu estado mais baixo de energia (estado fundamental) liberando fótons ("desacoplamento de fótons"), e esses fótons ainda podem ser detectados hoje como o fundo cósmico de microondas (CMB). Atualmente, é a observação mais antiga que temos do Universo.
De 370 mil anos até cerca de 1 bilhão de anos. Após recombinação e dissociação, o universo era transparente, mas as nuvens de hidrogênio apenas entraram em colapso muito lentamente para formar estrelas e galáxias, então não havia novas fontes de luz. Os únicos fótons (radiação eletromagnética, ou "luz") no universo foram os liberados durante a dissociação (hoje visível como fundo cósmico de microondas) e emissão de rádio 21 cm ocasionalmente emitido por átomos de hidrogênio. Os fótons dissociados teriam preenchido o universo com um brilho laranja pálido brilhante no início, gradualmente mudando para vermelho não visível depois de cerca de 3 milhões de anos, deixando-o sem luz visível. Este período é conhecido como a Idade cósmica das Trevas.
Entre 10 e 17 milhões de anos, a temperatura média do universo foi adequada para água líquida de 273 K (−0,150 °C)–373 K (99,9 °C) e especula-se se planetas rochosos ou mesmo a vida poderiam ter surgido brevemente, uma vez que estatisticamente uma pequena parte do universo poderia ter condições diferentes das demais como resultado de uma flutuação estatística muito improvável e ter recebido calor do universo como um todo.
Em algum momento, cerca de 200 a 500 milhões de anos, as primeiras gerações de estrelas e galáxias se formam (horários exatos ainda estão sendo pesquisados) e grandes estruturas emergem gradualmente, atraídas pelo filamento na forma de espuma da matéria escura, filamentos que já começaram a se unir por todo o universo. As primeiras gerações de estrelas ainda não foram observadas astronomicamente. Eles podem ter sido enormes (100-300 massas solares) e não-metálicos, com vida útil muito curta em comparação com a maioria das estrelas que vemos hoje; terminam de queimar seu combustível de hidrogênio e explosão enérgica altamente das supernovasinstabilidade de pares e depois de meros milhões de anos.[7] Outras teorias sugerem que eles podem ter incluído pequenas estrelas, algumas talvez ainda aquecendo hoje. Em ambos os casos, essas primeiras gerações de supernovas criaram a maior parte cotidiana dos elementos, que vemos ao nosso redor até hoje e semeiam o universo com elas.
Aglomerado de galáxias se superaglomerados surgem com o tempo. Em algum momento, fótons de alta energia das estrelas mais antigas, galáxias anãs e talvez quasares levam a um período de reionização que começa gradualmente entre 250 a 500 milhões de anos, é concluído em cerca de 700-900 milhões de anos e diminui em cerca de 1 bilhão de anos (horários exatos ainda sendo pesquisados). O universo transitou gradualmente para o universo que vemos ao nosso redor hoje, e a Idade das Trevas só chegou ao fim em cerca de 1 bilhão de anos.
Desde 1 bilhão de anos e por cerca de 12,8 bilhões de anos, o universo tem a mesma aparência de hoje. Ele continuará parecendo muito semelhante por muitos bilhões de anos no futuro. O disco fino da nossa galáxia começou a se formar em cerca de 5 bilhões de anos (8.8 Gya),[8] e a Sistema Solar formado em cerca de 9,2 bilhões de anos (4,6 Gya), com os primeiros traços de vida na Terra emergindo em cerca de 10,3 bilhões de anos (3,5 Gya).
De cerca de 9,8 bilhões de anos de tempo cósmico,[9] a lenta expansão do espaço gradualmente começa a acelerar sob a influência da energia escura, que pode ser um campo escalar em todo o universo. O universo atual é bem compreendido, mas além de cerca de 100 bilhões de anos de tempo cósmico (cerca de 86 bilhões de anos no futuro), as incertezas no conhecimento atual significam que temos menos certeza de qual caminho nosso universo seguirá.
Em algum momento o Era Estelífera terminará quando as estrelas não estiverem mais nascendo, e a expansão do universo significará que o universo observável se torne limitado às galáxias locais. Existem vários cenários para o futuro distante e o Destino final do universo. Um conhecimento mais exato do nosso universo atual permitirá que eles sejam melhor compreendidos.
A escala de Planck é a escala física além da qual as teorias físicas atuais podem não se aplicar e não pode ser usada para calcular o que aconteceu. Durante a era de Planck, supõe-se que a cosmologia e a física tenham sido dominadas pelos efeitos quânticos da gravidade.
As forças do modelo padrão teve separação, mas também teve energia mais alta de quarks para se aglutinar nos hádrons, em vez disso, formando um plasma de quarks e glúons. Estas são as energias mais altas diretamente observáveis no Grande Colisor de Hádrons.
Quarks possui limite para dentro de hádrons. Uma ligeira assimetria de resultados da matéria-antimatéria (assimetria de bárions) das fases anteriores de anti-hádrons são eliminados.
Galáxias mais antigas: de cerca de ?300-400 Ma (primeiras estrelas: semelhantes ou anteriores) Galáxias mais novas: 1 Ga ~ 10 Ga (Horários exatos sendo pesquisados)
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
O Universo muito primitivo
Toda a compreensão que se tem do começo do Universo (Cosmogonia), é especulativa. Nenhum acelerador de partículas atualmente existente possui energia suficiente para provar com certeza aquilo que possa ter ocorrido neste período. Os cenários são completamente diferentes. Algumas das teorias existentes são a de Hartle-Hawking, a teoria das cordas, expansão das partículas, cosmologia das cordas de gás, e a teoria Wielkiej Kraksy (Universo ekpyrótico). Algumas dessas teorias são associadas, outras não.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
A Era da Grande Unificação
Entre 10-43 segundos e 10-36 segundos após o Big Bang[11]
Com a expansão do universo e resfriamento da época Planck, a gravidade começou a separação da interações de gauge fundamentais: o eletromagnetismo e as forças nucleares forte e fraca. A Física nesta escala pode ser descrita por uma grande teoria da unificação na qual a teoria de gauge do modelo padrão esteja embutida num grupo maior, que é dividido para produzir as forças observadas na natureza. Eventualmente, a grande unificação foi quebrada, separando-se a força nuclear forte da força eletrofraca. Isto, então, deve ter produzido os monopólos magnéticos.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
A Era Eletrofraca
Entre 10-36 segundos e 10-32 segundos após o Big Bang[11]
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
A Era Inflacionária e a rápida expansão do espaço
Entre 10-32 segundos e (?) segundos após o Big Bang
A temperatura e, portanto, o tempo, no qual ocorre a inflação cósmica não é conhecido com certeza. Durante a inflação, o universo é achatado e o universo entra em um fase de rápida expansão homogênea e isotrópica em que as sementes da formação da estrutura são fixadas na forma de um espectro primordial de quase-flutuações de escala invariante. Alguma energia dos fótons torna-se virtuaisquarks e híperons, mas estas partículas rapidamente em caimento. Um cenário sugere que, antes de inflação cósmica, o universo era frio e vazio, e o imenso calor e energia associada com as fases iniciais do Big Bang foi criada através da mudança de fase associada com o fim da inflação.
Este rápido aumento da expansão das dimensões lineares do início do universo por um factor de pelo menos 1026 (e possivelmente um factor muito maior), e assim o seu volume aumentado por um factor de pelo menos 1078.
A expansão é pensado para ter sido desencadeada pela transição de fase que marcou o final do precedente era da grande unificação em aproximadamente 10−36 segundos após o Big Bang. Um dos produtos teóricos desta transição de fase foi um campo escalar chamado o campo ínflaton. Como este campo se estabeleceram em seu estado de energia mais baixo em todo o universo, é gerada uma força repulsiva que levou a uma rápida expansão do espaço. Esta expansão explica várias propriedades do universo atual que são difíceis de explicar sem uma época tão inflacionária.
Não se sabe exatamente quando a época terminou inflacionária, mas acredita-se ter sido entre 10−33 and 10−32 segundos após o Big Bang. A rápida expansão do espaço fez com que as partículas elementares que restaram da época grandiosa unificação foram agora distribuídos muito fina em todo o universo. No entanto, o enorme potencial energético do campo a inflação foi lançado no final da época inflacionária, repovoar o universo com um denso, mistura quente de quarks, anti-quarks e glúons como ele entrou na era eletrofraca.
Em 17 de março de 2014, os astrofísicos do BICEP2 colaboração anunciou a detecção de inflacionários de ondas gravitacionais no modo B no espectro de potência, fornecendo a primeira evidência experimental clara para a inflação cosmológica e o Big Bang.[1][2][3][12][13] No entanto, em 19 de junho de 2014, reduzido a confiança em confirmar as inflação cósmica descobertas foi relatado.[14][15][16]
Durante o reaquecimento, a expansão exponencial que ocorreu durante a inflação cessa e a energia potencial do campo ínflaton decai para um quente, plasma de partículas relativistas. Se a grande unificação é uma característica do nosso universo, então a inflação cósmica deve ocorrer durante ou após a grande unificação da simetria é quebrada, caso contrário, monopólos magnéticos seria visto no universo visível. Neste ponto, o universo é dominado pela radiação; quarks, elétrons e forma neutrinos.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Se supersimetria é uma propriedade do nosso universo, então ele deve ser quebrado em uma energia tão baixa quanto 1 TeV, a escala de simetria eletrofraca. As massas das partículas e suas S-partículas, deixará então de ser igual, o que poderia explicar por que razão não há superparceiros de partículas conhecidas que já foram observados.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
O Universo primitivo
Após extremidades da inflação cósmica, o universo é preenchido com um plasma quark-glúon. Deste ponto em diante a física do Universo primordial é melhor compreendido, e menos especulado.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
A Era de Quark
Entre 10-12 segundos e 10-6 segundos após o Big Bang
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Não há conhecimento na física que pode explicar o fato de há tantos mais bariões no universo do que antibariões. Para isto de ser explicado, as condições Sakharov deve ser cumprida em algum momento após a inflação. Há indícios de que isso é possível na física conhecida e de estudar as grandes teorias unificadas, mas a imagem completa não é conhecido.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
O plasma quark-glúon que compõe o universo resfria até que hádrons, incluindo bárions, como prótons e nêutrons, podem formar. Em cerca de 1 segundo após o Big Bang e começar dissociar os neutrinos de viajar livremente pelo espaço. Este fundo cósmico de neutrinos, enquanto improvável que alguma vez ser observado em detalhes, é análogo a radiação cósmica de fundo que foi emitido muito mais tarde.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Desacoplamento de neutrino e fundo cósmico de neutrinos (CνB)
Aproximadamente 1 segundo após o Big Bang os neutrinos se desacoplam e começam a viajar livremente pelo espaço. Como os neutrinos raramente interagem com a matéria, esses neutrinos ainda existem hoje, de maneira análoga à muito posterior radiação cósmica de fundo emitida durante a recombinação, cerca de 370.000 anos após o Big Bang. Os neutrinos desse evento têm uma energia muito baixa, cerca de 10 a 10 vezes menor do que é possível com a detecção direta atual.[17] Mesmo os neutrinos de alta energia são notoriamente difíceis de detectar, então este fundo cósmico de neutrinos (CvB) pode não ser observado diretamente em detalhes por muitos anos, tendo que será.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Possível formação de buracos negros primordiais
Pode ter ocorrido cerca de 1 segundo após o Big Bang
Os buracos negros primordiais são um tipo hipotético de buraco negro proposto em 1966,[18] que pode ter se formado durante a chamada era de dominação por radiação, devido às altas densidades e condições não homogêneas dentro do primeiro segundo do tempo cósmico. As flutuações aleatórias podem fazer com que algumas regiões se tornem densas o suficiente para sofrer um colapso gravitacional, formando buracos negros. Teorias e entendimentos atuais colocam limites rígidos na abundância e massa desses objetos.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
A maioria dos hádrons e anti-hádrons aniquilar uns aos outros no final da era de hádron, deixando léptons e anti-léptons dominando a massa do universo.
Aproximadamente 3 segundos após o Big Bang a temperatura do universo cai até ao ponto em que os novos pares de léptons/anti-léptons não são criados e a maioria dos léptons e anti-léptons, são eliminados em reações de aniquilação, deixando um pequeno resíduo de léptons.[19][20][21]
Depois de a maioria dos léptons e anti-léptons são aniquilados no final da era de lépton, as energia do universo é dominado por fótons. Estes fótons ainda estão interagindo com frequência com prótons, elétrons e (eventualmente) núcleos, e continuam a fazê-lo para os próximos 300 mil anos.
Durante a era de fóton, a temperatura do universo cai até ao ponto em que os núcleos atómicos podem começar a formar. Prótons (íons de hidrogênio) e nêutrons começam a combinar em núcleos atômicos no processo de fusão nuclear. No entanto, nucleossíntese dura apenas cerca de três minutos, após o que a temperatura e densidade do universo caiu para o ponto onde a fusão nuclear não pode continuar. Neste momento, há cerca de três vezes mais íons de hidrogênio do que os núcleos hélio-4 e apenas quantidades vestigiais de outros núcleos.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Neste momento, as densidades de matéria não-relativista (núcleos atómicos) e radiação relativista (fótons) são iguais. O comprimento de Jeans, que determina as menores estruturas que podem formar (devido à concorrência entre a atração gravitacional e efeitos de pressão), começa a cair e perturbações, em vez de ser dizimado por radiação livre-transmissão, que pode começar a crescer em amplitude.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Primeiras moléculas
100.000 anos após o Big Bang
Por volta de 100.000 anos, o universo esfriou o suficiente para o hidreto de hélio, a primeira molécula, se formar. Em abril de 2019, essa molécula foi anunciada pela primeira vez como descoberta no espaço interestelar. (Muito mais tarde, o hidrogênio atômico reage com o hidreto de hélio para criar o hidrogênio molecular, o combustível necessário para a formação de estrelas.)
Recombinação, desacoplamento de fótons e a radiação cósmica de fundo (CMB)
Os átomos de Hidrogênio e Hélio começam a se formar e a densidade do universo cai. Durante a recombinação ocorre dissociação, fazendo com que os fótons evoluam de forma independente a partir da matéria. Isso significa que os fótons que compõem a radiação cósmica de fundo são um retrato do universo durante essa época.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Idade das Trevas e surgimento da estrutura em larga escala
Entre 370 mil e cerca de 1 bilhão de anos após o Big Bang
Formação da estrutura no modelo do Big Bang procede de forma hierárquica, com estruturas menores formando antes de os maiores. As primeiras estruturas a formam são quasares, que são pensadas como ser brilhantes, começando como galáxias ativas e estrelas populacionais III. Antes dessa época, a evolução do universo poderia ser entendido através cosmológica teoria de perturbações lineares, ou seja, todas as estruturas poderia ser entendido como pequenos desvios de um universo homogêneo perfeito. Este é computacionalmente relativamente fácil de estudar. Neste ponto, as estruturas não-lineares começam a se formar, e o problema computacional torna-se muito mais difícil, envolvendo, por exemplo, simulação N-bodys com partículas.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Nesta era, muito poucos átomos são ionizados, então a única radiação emitida é a 21 centímetros de spin linha de hidrogénio neutro. Existe atualmente um esforço observacional em curso para detectar essa radiação profunda, como é, em princípio, uma ferramenta ainda mais poderosa do que a radiação cósmica de fundo para o estudo do universo primordial.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
A química da vida pode ter começado logo após o Big Bang, 13,8 bilhões anos atrás, durante uma erahabitável quando o Universo tinha apenas 10-17 000 000 anos de idade.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
As primeiras estrelas, mais provável que as estrelas da população III, forma e iniciar o processo de transformar os elementos leves que foram formados no Big Bang (hidrogénio, hélio e lítio) em elementos mais pesados. No entanto, como ainda não houve população de estrelas III observadas, e compreensão deles está baseada em modelos computacionais da sua formação e evolução. Felizmente observações da radiação cósmica de fundo de microondas pode ser usado para data em que a formação de estrelas começou a sério. Análise de tais observações feitas pelo telescópio Planck da Agência Espacial Europeia, como relatado pela BBC News no início de fevereiro de 2015, conclui que a primeira geração de estrelas se iluminou 560 000 mil anos após o Big Bang.[22][23]
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Os primeiros quasares formam a partir de colapso gravitacional. A intensa radiação que emitem reionização ao universo circundante. Deste ponto em diante, a maior parte do universo é composto de plasma.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Galáxias, aglomerados e superaglomerados galácticos
Colapso de grandes volumes de matéria, para formar uma galáxia. População de estrelas II são formadas no início desse processo, com a população de estrelas I se formaram mais tarde.
Atração gravitacional puxa galáxias em relação uns aos outros para formar grupos, aglomerados e superaglomerados.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Finalmente, objetos da nossa escala, se formar o Sistema Solar. Nosso Sol é uma estrela de geração jovem, incorporando os restos de muitas gerações de estrelas anteriores, e formou aproximadamente 5 bilhões de anos, ou cerca de 8-9 000 000 000 de anos após o Big Bang.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
O Universo como aparece hoje
O universo apareceu da mesma forma que agora, por muitos bilhões de anos. Ele continuará parecido por muitos bilhões de anos no futuro.
Com base na ciência emergente da nucleocosmocronologia, estima-se que o disco fino galáctico da Via Láctea tenha sido formado 8,8 ± 1,7 bilhões de anos atrás.[8]
A partir de cerca de 9,8 bilhões de anos de tempo cósmico, acredita-se que o comportamento em grande escala do universo tenha mudado gradualmente pela terceira vez em sua história.[25] Seu comportamento foi originalmente dominado pela radiação (constituintes relativísticos, como fótons e neutrinos) durante os primeiros 47.000 anos, e desde cerca de 370.000 anos do tempo cósmico, seu comportamento foi dominado pela matéria. Durante sua era dominada pela matéria, a expansão do universo começou a desacelerar, à medida que a gravidade refreava a expansão inicial para fora. Mas a partir de cerca de 9,8 bilhões de anos de tempo cósmico, as observações mostram que a expansão do universo lentamente para de desacelerar e, em vez disso, começa a acelerar novamente.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Com as interpretações do que aconteceu no universo previamente, avanços na física fundamental são necessários antes que seja possível saber o destino final do universo com toda a certeza. Abaixo estão algumas das principais possibilidades.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Este cenário é geralmente considerado como o mais provável, se o universo continuar expandindo como atualmente. Em uma escala de tempo na ordem de um trilhão de anos, as estrelas existentes se queimarão, e o universo ficará escuro. O universo se aproximará de um estado altamente entrópico. Sobre uma escala de tempo muito mais longa nas eras que seguem este, as galáxias entrarão em colapso nos buracos negros que consequentemente irão evaporar através da radiação de Hawking. Em algumas teorias de grande unificação, a decomposição de prótons converterá o gás interestelar remanescente em pósitrons e elétrons, que então se recombinarão em fótons. Neste caso, o universo será indefinidamente composto apenas de um banho de radiação uniforme, que sofrerá lentamente desvio para o vermelho (redshifted) em estados de energia menor e menor, congelando-se.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Se a densidade de energia da energia escura fosse negativa ou o universo for um sistema fechado, então seria possível que a expansão do universo se invertesse e o universo se contraísse formando um corpo quente em estado denso. Isso seria análogo a uma inversão do big bang. Isto é frequentemente proposto como parte de um universo oscilatório, como um modelo cíclico. As observações atuais sugerem que esse modelo de universo provavelmente não está correto e a expansão continuará.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Este cenário só é possível se a densidade de energia da energia escura realmente aumentar sem limite ao longo do tempo. Essa energia escura é chamada de energia fantasma e é diferente de qualquer tipo conhecido de energia (exceto da energia da partícula virtual). Neste caso, a taxa de expansão do universo aumentará sem limite. Sistemas ligados gravitacionalmente, tais como aglomerados de galáxias, galáxias e, em última instância, o sistema solar serão despedaçados. Eventualmente, a expansão será tão rápida que irá superar as forças eletromagnéticas que mantêm moléculas e átomos juntos. Finalmente, mesmo os núcleos atômicos serão despedaçados e o universo como o conhecemos terminará em um tipo incomum de singularidade gravitacional. Em outras palavras, o universo se expandirá tanto que a força eletromagnética que mantém as coisas juntas cairá conforme a expansão do universo, fazendo com que as todas as coisas desmoronem.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
Evento de metaestabilidade a vácuo (Vacuum metastability event)
Se o nosso universo estiver em um falso vácuo, é possível que o universo vá para um estado de energia mais baixo. Se isso acontecer, todas as estruturas serão destruídas instantaneamente, sem aviso prévio.
Este artigo ou seção pode conter informações desatualizadas. Se tem conhecimento sobre o tema abordado, edite a página e inclua as informações mais recentes, citando fontesconfiáveis e independentes. —Encontre fontes:ABW • CAPES • Google (N • L • A)
↑Tanabashi, M. 2018, chpt. 21.4.1: "Big-Bang Cosmology" (Revisado em Setembro de 2017) por Keith A. Olive e John A. Peacock., p. 358*Notas: Edward L. Wright' de Javascript Cosmology Calculator (último modificado em 23 de julho de 2018). Com um padrão = 7001696000000000000♠69.6 (baseado no parâmetro WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H0/Riess), a idade calculada do universo com um desvio para o vermelho de z = 1100 está de acordo com Olive e Peacock (cerca de 370.000 anos).*Hinshaw, Weiland & Hill 2009. Ver PDF: página 45, Tabela 7, Idade na dissociação, última coluna. Baseado em WMAP+BAO+SN parâmetros, a idade de dissociação ocorreu 7005376971000000000♠376971+3162 −3167 anos atrás do Big Bang.*Ryden 2006, pp. 194–195. "Sem entrar nos detalhes da física do não-equilíbrio, vamos nos contentar dizendo, em números redondos, zdec ≈ 1100, correspondendo na temperatura Tdec ≈ 3000 K, quando a idade do universo foi tdec ≈ 350,000 yr no Benchmark Model ("Modelo de Referência"). (...) Os tempos relevantes de vários eventos na época da recombinação são mostrados em Tabela 9.1. (...) Notas que todos esses tempos são aproximados e dependem do modelo cosmológico escolhido. (Escolhi Modelo de Referência no cálculo desses números.)"
↑ abRyden B: "Introduction to Cosmology", pg. 196 Addison-Wesley 2003
↑Ade, P. A. R.; Aikin, R. W.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Brevik, J. A.; Buder, I.; Bullock, E.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Hristov, V. V.; Irwin, K. D.; Karkare, K. S.; Kaufman, J. P.; Keating, B. G.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Mason, P.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W. IV; Orlando, A.; Pryke, C.; Reintsema, C. D.; Richter, S.; Schwartz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Sudiwala, R. W.; Teply, G. P.; Tolan, J. E.; Turner, A. D.; Vieregg, A. G.; Wong, C. L.; Yoon, K. W. (17 de março de 2014). «BICEP2 I: Detection of B-mode Polarization at Degree Angular Scales»(PDF). Bibcode:2014PhRvL.112x1101A. arXiv:1403.3985. doi:10.1103/PhysRevLett.112.241101. Consultado em 31 de julho de 2015. Arquivado do original(PDF) em 17 de março de 2014
↑Zel'dovitch, Yakov B.; Novikov, Igor D. (Janeiro–fevereiro de 1967). «The Hypothesis of Cores Retarded During Expansion and the Hot Cosmological Model». Soviet Astronomy. 10 (4): 602–603. Bibcode:1967SvA....10..602ZParâmetro desconhecido |autor1-link= ignorado (ajuda); Parâmetro desconhecido |autor2-link= ignorado (ajuda)*Traduzido de: Zel'dovitch, Yakov B.; Novikov, Igor D. (Julho–agosto de 1966). «The Hypothesis of Cores Retarded During Expansion and the Hot Cosmological Model». Astronomicheskii Zhurnal. 43 (4): 758–760. Bibcode:1966AZh....43..758ZParâmetro desconhecido |autor1-link= ignorado (ajuda); Parâmetro desconhecido |autor2-link= ignorado (ajuda)