Chromosom

Chromosom submetacentryczny:
1 – chromatyda, 2 – centromer – miejsce złączenia dwóch chromatyd, 3 – ramię krótkie, 4 – ramię długie
Kolejne stopnie upakowania materiału genetycznego

Chromosom – forma organizacji materiału genetycznego wewnątrz komórki[1]. Nazwa pochodzi z języka greckiego, gdzie χρῶμα (chroma, kolor) i σῶμα (soma, ciało). Chromosomy rozróżniano poprzez wybarwienie. Pierwszy raz terminu tego użył Heinrich Wilhelm Waldeyer w roku 1888[2].

Budowa

Chromosomy występują w formie mikroskopijnej struktury, najlepiej widocznej w metafazie podziału komórkowego, kiedy to są najbardziej skondensowane. Chromosomy eukariontów są zbudowane z dwóch siostrzanych chromatyd, połączonych w jednym punkcie centromerem (wyjątkiem są chromosomy powstałe po pęknięciu centromeru w trakcie podziału jądra komórkowego – pod koniec metafazy). Każda z chromatyd utworzona jest z jednej liniowej podwójnej helisy DNA. U organizmów prokariotycznych chromosom stanowi jedna, zwykle kolista, podwójna nić DNA[a][b]. Zarówno u prokariontów, jak i eukariontów, chromosomowy DNA związany jest w kompleksy z białkami histonowymi lub histonopodobnymi (u prokariontów). W komórkach organizmów prokariotycznych i niektórych eukariotycznych (drożdże, pierwotniaki) występują również nieosłonięte, koliste DNA, zwane plazmidami.

U organizmów eukariotycznych chromosomy z obu stron zakończone są powtarzającą się sekwencją nukleotydów tworzących telomer. Skracanie telomerów podczas podziałów komórki być może prowadzi do starzenia się komórki.

Na chromosomach zawierających geny kodujące rRNA występują trabanty (satelity) zawierające DNA pozwalające na odtworzenie jąderka po podziale komórki. Satelitarne DNA uczestniczy również w stabilizacji chromosomów oraz w koniugacji i crossing-over.

Locus to miejsce w chromosomie, gdzie zlokalizowany jest dany gen.

Struktura chromosomu nie jest niezmienna, podlega on bowiem zmianom zwanym mutacjami. Mutacje dotyczące bezpośrednio chromosomów to aberracje chromosomowe lub mutacje genomowe.

Chromosomy dzielą się na autosomy – zawiadujące dziedziczeniem cech niesprzężonych z płcią, oraz chromosomy płciowe – czyli allosomy lub heterosomy, których obecność przejawia się u konkretnej płci i w wielu przypadkach determinuje ją.

Ze względu na położenie centromeru wyróżnia się chromosomy:

Identyfikacja chromosomów

W celu dokładnego określenia każdej pary chromosomowej w grupie badanej, należy na początku oczyścić preparat z zanieczyszczeń białkowych za pomocą trypsyny. Następnie stosuje się tzw. odczynnik Giemsy, który zabarwia chromosomy tworząc charakterystyczne dla każdego z nich sekwencje prążków. Metoda ta została zatwierdzona na Konferencji Paryskiej w 1972 roku[5].

Liczba chromosomów

Liczba chromosomów u różnych gatunków może być różna – od pojedynczych par (u samców Myrmecia pilosula występuje jeden chromosom, samica tego gatunku ma dwa chromosomy[6]) aż do kilkuset par, ale zazwyczaj wynosi kilka do kilkudziesięciu par (4 pary u muszki owocowej[6], 20 par u myszy[potrzebny przypis], 23 pary u człowieka[6], 24 pary u szympansa[6], 39 u psa[6]), najwięcej chromosomów (wśród roślin) – 1260 stwierdzono u nasięźrzału Ophioglossum reticulatum[7][6]). Aulacantha scolymantha ma około 2000 chromosomów[6]. W procesie ewolucji liczba chromosomów może ulec zmianie na skutek mutacji, tak jak w przypadku chromosomu 2 u człowieka, o którym uważa się, że powstał poprzez połączenie dwóch chromosomów małp człekokształtnych[8].

Komórki mogą być:

  • haploidalne – zawierać pojedynczą kopię każdego z autosomów oraz kopie allosomów (chromosomów płciowych) własnej płci.
  • diploidalne – zawierać podwójną kopię każdego z autosomów oraz kopie allosomów własnej płci.
  • poliploidalne – jeśli garnitur chromosomowy jest zwielokrotniony ponad dwukrotnie.

U gatunków rozmnażających się bezpłciowo każda komórka organizmu ma tę samą liczbę chromosomów.

Komórki niehaploidalne posiadają chromosomy homologiczne, które zawierają te same geny, jednak mogą zawierać różne allele. U gatunków rozmnażających się płciowo występują komórki zarówno haplo- jak i diploidalne. W przypadku wielu organizmów, w tym zdecydowanej większości kręgowców, liczba chromosomów w komórkach somatycznych jest dwa razy większa (diploidalna) niż w gametach (haploidalna). Do powstania haploidalnych gamet dochodzi w wyniku mejozy. Podział komórek somatycznych (diploidach) zachodzi na drodze mitozy, w której najpierw dochodzi do podwojenia materiału genetycznego.

W przypadku innych organizmów, takich jak np. rośliny lądowe, występuje przemiana pokoleń – pokolenie haploidalne występuje po pokoleniu diploidalnym. Są one przeważnie bardzo od siebie odmienne.

Innym przypadkiem są błonkówki, u których samice są diploidalne, a samce haploidalne.

Chromosomy człowieka

W prawidłowym kariotypie człowieka występują 22 pary autosomów i 1 para chromosomów płciowych (u kobiet złożona z dwóch chromosomów X, natomiast u mężczyzn z chromosomu X i chromosomu Y). Ponadto w mitochondriach komórek ludzkich znajduje się DNA mitochondrialny. Mutacje genomowe prowadzą do powstawania aberracji chromosomowych, które wywołują zaburzenia genetyczne lub zespoły chorobowe, takie jak zespół Downa, zespół Turnera, zespół Klinefeltera i inne. Na przykład osoby z zespołem Downa posiadają dodatkowy chromosom 21 pary. Wszystkie ludzkie chromosomy zostały zsekwencjonowane w ramach projektu poznania ludzkiego genomu.

Chromosom Liczba genów Wielkość w parach zasad Poznane zasady†
Chromosom 1 2968 245 203 898 218 712 898
Chromosom 2 2288 243 315 028 237 043 673
Chromosom 3 2032 199 411 731 193 607 218
Chromosom 4 1297 191 610 523 186 580 523
Chromosom 5 1643 180 967 295 177 524 972
Chromosom 6 1963 170 740 541 166 880 540
Chromosom 7 1443 158 431 299 154 546 299
Chromosom 8 1127 145 908 738 141 694 337
Chromosom 9 1299 134 505 819 115 187 714
Chromosom 10 1440 135 480 874 130 710 865
Chromosom 11 2093 134 978 784 130 709 420
Chromosom 12 1652 133 464 434 129 328 332
Chromosom 13 748 114 151 656 95 511 656
Chromosom 14 1098 105 311 216 87 191 216
Chromosom 15 1122 100 114 055 81 117 055
Chromosom 16 1098 89 995 999 79 890 791
Chromosom 17 1576 81 691 216 77 480 855
Chromosom 18 766 77 753 510 74 534 531
Chromosom 19 1454 63 790 860 55 780 860
Chromosom 20 927 63 644 868 59 424 990
Chromosom 21 303 46 976 537 33 924 742
Chromosom 22 288 49 476 972 34 352 051
Chromosom X 1184 152 634 166 147 686 664
Chromosom Y 231 50 961 097 22 761 097
nieprzypisane ? 25 263 157 25 062 835

Zobacz też

Uwagi

  1. Istnieje kilka gatunków bakterii z liniowym DNA[3].
  2. W komórkach eukariotycznych występuje też koliste, niechromosomowe DNA[4].

Przypisy

  1. Wojciech Sawicki: Histologia. Warszawa: Wydawnictwo Lekarskie PZWL. ISBN 978-83-200-3710-4.
  2. Lucjan Wiśniewski: Choroby Chromosomowe, BIOLOGIA W SZKOLE Nr.1 (167) XXXIII 1980, s.7
  3. J.N. Volff, J. Altenbuchner, A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution, „FEMS Microbiology Letters”, 186 (2), 2000, s. 143–150, DOI10.1111/j.1574-6968.2000.tb09095.x, PMID10802162 [dostęp 2022-10-11] (ang.).
  4. S. Cohen, D. Segal, Extrachromosomal circular DNA in eukaryotes: possible involvement in the plasticity of tandem repeats, „Cytogenetic and Genome Research”, 124 (3-4), 2009, s. 327–338, DOI10.1159/000218136, PMID19556784 [dostęp 2022-10-11] (ang.).
  5. Lucjan Wiśniewski: Choroby Chromosomowe, BIOLOGIA W SZKOLE Nr.1 (167) XXXIII 1980, s.9
  6. a b c d e f g Praca zbiorowa: Tablice biologiczne. Warszawa: Wydawnictwo Adamantan, 2003, s. 297. ISBN 83-7350-029-4.
  7. Clive A. Stace: Taksonomia roślin i biosystematyka. Warszawa: Wydawnictwa Naukowe PWN, 1993, s. 154. ISBN 83-01-11251-4.
  8. http://www.evolutionpages.com/chromosome_2.htm Alec MacAndrew; accessed 18 May 2006.
  9. Wayback Machine [online], www.ncbi.nlm.nih.gov [dostęp 2017-11-22] [zarchiwizowane z adresu 2005-04-01] (ang.).

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!