Il siluro può essere anche utilizzato come parte di un'altra arma: il siluro Mark 46 usato dagli Stati Uniti è parte del sistema antisommergibile ASROC, mentre la mina CAPTOR consiste in una piattaforma immersa che lancia un siluro quando identifica un contatto ostile tramite sonar.
Etimologia
La denominazione "torpedine" deriva dall'omonimo genere di razze elettriche dell'ordine dei Torpediniformes, denominazione che a sua volta deriva dal latino "torpere", essere rigido o paralizzato. Non c'è peraltro somiglianza di forma tra la razza e la torpedine meccanica.
In ambito navale, il termine "torpedine" per la prima volta fu usato da Robert Fulton, che così battezzò la carica di polvere da sparo rimorchiata usata dal suo sottomarinoNautilus nel 1800-1805 per dimostrare che potesse affondare navi da guerra.
Il Siluro Bangalore, ideato dall'esercito britannico nel 1912, è un congegno esplosivo cilindrico montato all'estremità di un tubo e usato per aprire varchi nei campi minati o nel filo spinato. Si può considerare una forma terrestre di torpedine.
Il termine "siluro" si riferisce invece alla forma di vari pesci appartenenti all'ordine dei Siluriformi, denominazione a sua volta derivata dal nome greco dell'omonima specie di pesce gatto[2].
Storia
Prima dell'invenzione del siluro navale a propulsione autonoma, il termine "siluro" fu applicato a quegli ordigni esplosivi che avevano la caratteristica di essere nascosti, e che noi chiameremmo oggi mina antiuomo, mina terrestre, mina navale, fra le altre.
Anche se il termine "torpedine" venne coniato solo nel XIX secolo, il primo sottomarino, il Turtle (1775) attaccò usando un congegno esplosivo molto simile alle "torpedini" di Fulton. Il Turtle avrebbe dovuto immergersi sotto un vascello britannico, perforarne la chiglia e attaccarvi una bomba. La bomba sarebbe esplosa dopo un tempo prestabilito, presumibilmente con un meccanismo a orologeria. Nel suo unico attacco registrato, contro la HMS Eagle, il Turtle non riuscì a penetrarne la chiglia, in quanto rivestita di rame per resistere all'azione degli organismi marini.
Il primo uso del termine "torpedine" in riferimento a un congegno esplosivo in ambito navale si deve a Robert Fulton che così denominò la carica di polvere da sparo rimorchiata usata dal suo sottomarino Nautilus nel 1800-1805 per dimostrare che potesse affondare navi da guerra. Questo tipo di torpedine rimorchiata, ricoperta di detonatori a contatto, rimase in uso durante tutta la Guerra civile americana. Il sottomarino confederato H. L. Hunley fu originariamente progettato per utilizzare questo tipo di arma.
La guerra civile americana vide l'utilizzo di diversi tipi di torpedini navali, maggiormente da parte dei Confederati, i quali erano in grande svantaggio nei metodi di guerra tradizionali. I modelli più semplici erano torpedini galleggianti, con detonatori a tempo o a contatto, mandati alla deriva lungo la corrente dei fiumi per colpire le forze nemiche più a valle. Come ci si può attendere erano ben poco affidabili. Vennero costruiti diversi tipi di torpedini ancorate, riempiendo barili o damigiane con polvere da sparo e applicandovi detonatori a contatto. Queste potevano essere un pericolo per le navi Confederate, come per quelle dell'Unione, perciò talvolta erano segnalate da una bandiera, che poteva essere rimossa se si temeva un attacco. I fiumi minati dalle torpedini confederate venivano spesso bonificati col semplice espediente di far precedere la flotta da piccole barche guidate da soldati confederati prigionieri, e a conoscenza della localizzazione delle mine.
Vennero anche impiegate torpedini sommerse a detonatore elettrico. Esse avevano il vantaggio di essere controllate da un operatore posizionato sulla riva, cosicché non si correva il rischio di colpire natanti amici, e anzi si poteva scegliere, fra i nemici, il bersaglio da privilegiare. Tuttavia la Confederazione era afflitta da una cronica scarsità di materiali, compreso il platino e il rame per i cavi e le batterie, e i cavi stessi andavano soggetti a frequenti rotture.
Il guardiamarina Giovanni Emanuele Elia, della Marina Italiana, il 21 settembre 1899 riceveva il brevetto per la sua nuova torpedine, sperimentata sulla R. N. Washington.[3]
Le prime torpedini guidate su un obiettivo specifico furono dei tubi esplosivi in cui la carica era posizionata al termine di un'asta lunga una decina di metri che sporgeva, sott'acqua, dalla prua della nave attaccante. Quando diretta contro il vascello nemico e fatta detonare, si poteva causare una breccia nella chiglia, sotto la linea di galleggiamento. Vennero impiegate dal sottomarino H. L. Hunley e dalle torpediniere Confederate di classe David, tra le altre.
Bombe e mine antiuomo
Durante la guerra civile americana, il termine "torpedine" venne anche utilizzato in riferimento a vari tipi di bomba e dispositivi antiuomo. Il generale Confederato Gabriel Rains mise a punto delle "granate sotterranee" o "torpedini terrestri", ossia granate di artiglieria con detonatori a pressione seppellite lungo le strade su cui si ritiravano le forze Confederate, per ritardare il nemico nell'inseguimento. Erano gli antenati delle moderne mine terrestri. Sebbene i generali dell'Unione pubblicamente deplorassero questi mezzi, il generale Sherman impiegò la stessa tecnica nella sua "Marcia verso il mare".
L'agente segreto Confederato John Maxwell utilizzò un meccanismo a orologeria per detonare una grande "torpedine a orologeria" (una bomba a tempo) il 9 agosto 1864. La bomba era nascosta in una cassa riportante la scritta "candele" e piazzata a bordo di una chiatta dell'Unione carica di munizioni (20-30000 proiettili di artiglieria e 75000 colpi per armi leggere) che si trovava ancorata a City Point (Virginia), sul James River. L'esplosione causò danni per oltre due milioni di dollari e la morte di almeno 43 persone.
La "torpedine a carbone" era una bomba della foggia di un masso di carbone, concepita per essere nascosta nei cumuli di minerale destinati al rifornimento delle navi dell'Unione. Una volta immessa nelle caldaie causava un'esplosione.
Torpedini a propulsione autonoma
Il primo vero siluro si deve al fiumanoGiovanni Luppis, un ufficiale della Marina austriaca che aveva pensato a un ordigno galleggiante per la difesa costiera, guidato con funi da terra, che denominò "guardacoste". L'ordigno venne presentato all'imperatore Francesco Giuseppe nel porto di Fiume nel 1860, ma non ebbe ulteriori sviluppi. Luppis conobbe poi Robert Whitehead, un ingegnere e imprenditore britannico direttore dello Stabilimento Tecnico Fiumano, e nel 1864 strinse con lui un accordo per perfezionare la propria invenzione. Whitehead introdusse numerosi e radicali cambiamenti al progetto, che divenne subacqueo e venne denominato Minenschiff. Il primo siluro venne presentato ufficialmente alla Commissione Navale Imperiale il 21 dicembre 1866.
Per la sua invenzione Giovanni Luppis venne nominato nobile col predicato von Rammer (affondatore) con diploma dato in Vienna il 1º agosto 1869 dall'imperatore Francesco Giuseppe.
Dopo che il governo ebbe deciso di investire nell'invenzione, Whitehead impiantò la prima fabbrica di siluri a Fiume. Nel 1870 i due ingegneri perfezionarono i sistemi di propulsione per arrivare a un raggio d'azione di oltre 900 metri, a una velocità di sei nodi, e nel 1881 la fabbrica esportava i suoi siluri in dieci altri Paesi. La propulsione era assicurata da un dispositivo ad aria compressa, e la carica esplosiva era costituita da gloxylina o fulmicotone. Whitehead continuò a lavorare al progetto, dando dimostrazioni di siluri capaci di viaggiare a 18 nodi (1876), 24 nodi (1886) e infine 30 nodi (1890).
Whitehead acquisì i diritti di fabbricazione del giroscopio nel 1890 per migliorare la stabilità delle sue macchine. I suoi siluri si guadagnarono il nome di "Ordigni del demonio".
Nel 1877 l'Ammiragliato britannico gli pagò 15000 sterline per assicurarsi gli sviluppi futuri, ed egli aprì una nuova fabbrica sull'Isola di Portland nel 1891. Il siluro Whitehead più grande era lungo 5,8 metri, del diametro di 457 mm, in acciaio lucidato o bronzo al fosforo, con una testata di 90 chilogrammi di fulmicotone. L'aria era compressa a circa 90 atmosfere e muoveva due eliche attraverso un motore Brotherhood a tre cilindri. Un considerevole sforzo venne rivolto nel controllo della stabilità sia di direzione sia di profondità.
La prima nave d'alto mare a lanciare un siluro in combattimento, il 19 maggio 1877, fu l'incrociatore britannico HMS Shah che cercò, invano, di affondare il monitore peruviano Huascar.
Presto le unità siluranti guadagnarono grande considerazione e per controbatterle vennero varate le prime cacciatorpediniere. Anche delle cannoniere, navi di circa mille tonnellate di dislocamento, vennero equipaggiate con siluri.
Attorno al 1897Nikola Tesla brevettò una barca telecomandata e dimostrò poi la fattibilità dei siluri radiocomandati alla marina degli Stati Uniti. I siluri a guida radio non vennero sviluppati fino agli anni sessanta.
Durante la prima guerra mondiale, il termine "torpedine" assunse il significato odierno di "siluro", ossia proiettili a propulsione autonoma lanciati da una nave o un sottomarino. Più tardi i siluri vennero provvisti anche di dispositivi di guida autonoma.
Negli anni successivi i bilanci ristretti di quasi tutte le marine militari non consentirono di sviluppare oltre quest'arma. Solo i Giapponesi possedevano siluri pienamente collaudati all'inizio della seconda guerra mondiale. Tutte le classi di navi, dai cacciatorpediniere alle corazzate, erano armate di siluri.
La visione strategica di tutte le marine militari più importanti consisteva nell'affondamento delle principali unità nemiche, bersagli primari dei sottomarini, in un classico scontro tra le flotte in alto mare. Ciò era in linea con la teoria di Alfred Thayer Mahan, dominante nel pensiero strategico navale dell'epoca. Colpire il naviglio mercantile era proibito dalle regole di guerra. Per via delle pesanti corazzature allora in uso c'era la preoccupazione che i siluri non fossero efficaci: una potenziale soluzione fu un detonatore magnetico che avrebbe fatto sì che il siluro esplodesse "sotto" la nave, squarciandone lo scafo dal basso verso l'alto. In via di principio ciò era corretto: in tal modo si poteva colpire il bersaglio al di sotto della cintura corazzata, massimizzando l'effetto del siluro e sfruttando la maggiore pressione dell'acqua per causare più gravi allagamenti; inoltre si riduceva la dispersione verso l'alto dell'esplosione (la tipica "colonna d'acqua" causata dal siluro). Anche i moderni siluri agiscono nello stesso modo: esplodendo al di sotto della nave causano la concentrazione dell'energia verso l'alto, cioè verso la chiglia, risultando capace nella maggior parte dei casi di spezzare in due lo scafo della nave. La Germania, la Gran Bretagna e gli Stati Uniti svilupparono indipendentemente questo concetto; i siluri tedeschi e americani, tuttavia, soffrirono di problemi ai meccanismi di profondità, insieme a difetti al detonatore magnetico che erano comuni a tutti i progetti.
La mancanza di test sufficienti impedì di rilevare gli effetti del campo magnetico terrestre sulle navi e i meccanismi di scoppio, che risultarono in detonazioni premature, mentre una certa approssimazione fece passare sotto silenzio i difetti. La Kriegsmarine rispose prontamente identificando ed eliminando i difetti. La Royal Navy rimediò ugualmente. Nella marina degli Stati Uniti si accese una disputa sull'argomento. Un difetto di progettazione ne implicava un altro. Prove frettolose avevano consentito a progetti deficitari di entrare in servizio. Una certa tendenza all'insabbiamento, sia all'interno della marina sia al Congresso, impedì di correggere gli errori. Solo dopo venti mesi di guerra nel Pacifico gli Stati Uniti ebbero a disposizione siluri pienamente funzionanti.
Propulsione
Ad aria compressa
Il primo siluro del 1866 utilizzava aria compressa come fonte di energia. L'aria era immagazzinata a pressioni fino a 2,5 MPa (circa 25 atm) e inviata a un motore a pistoni che metteva in moto una singola elica ruotante a circa 100 giri al minuto. Era in grado di procedere per circa 180 metri a una velocità media di 6,5 nodi. La velocità e il raggio d'azione dei modelli successivi vennero migliorati aumentando la pressione dell'aria immagazzinata. Nel 1906 Whitehead costruì siluri in grado di viaggiare per quasi 1000 metri a una velocità media di 35 nodi.
A pressioni più elevate il raffreddamento dovuto all'espansione dell'aria causava problemi di congelamento. A questo fu posto rimedio riscaldando l'aria con acqua di mare prima di immetterla nel motore. Inaspettatamente questo espediente incrementò ulteriormente le prestazioni del motore, grazie all'ulteriore espansione che l'aria subisce con il riscaldamento.
Un limite di tutte le realizzazioni ad aria o a combustibile era la fuoriuscita di gas di scarico, che creavano una scia molto visibile dietro il siluro in corsa, permettendo alle vedette della nave bersaglio di individuare l'arma in arrivo anche a una certa distanza. Imbarcazioni veloci e manovriere (come ad esempio gli incrociatori e i caccia, meno le prime corazzate e i mercantili) potevano manovrare rapidamente per evitare i siluri, in genere accostando nella medesima direzione da cui proveniva la minaccia, mettendo la prua parallela al siluro. Era una manovra complessa e difficile, ma se svolta tempestivamente permetteva di evitare i siluri.
Siluri "riscaldati"
Il miglioramento delle prestazioni, dato dal riscaldamento dell'aria in decompressione, condusse all'idea di iniettare un carburante liquido, come il cherosene, nel flusso d'aria e incendiarlo. In tal modo l'aria si espande maggiormente e i gas di combustione stessi aumentano il flusso destinato al motore. La costruzione di tali siluri "riscaldati" iniziò attorno al 1904.
A riscaldamento d'acqua
Un ulteriore miglioramento al progetto venne dato dall'uso dell'acqua per il riscaldamento della camera di combustione. Ciò non solo risolse i problemi di surriscaldamento, ma aumentò la potenza generata iniettando nel motore il vapore generato insieme coi prodotti della combustione. I siluri con tale sistema di propulsione divennero noti come "a riscaldamento d'acqua" (mentre i siluri senza generazione di vapore, in contrasto, vennero chiamati "a riscaldamento secco"). La maggioranza dei siluri in uso nella prima e seconda guerra mondiale era di questo tipo.
A ossigeno compresso
La quantità di carburante che un motore di siluro può bruciare dipende dalla quantità di ossigeno trasportata. Poiché l'aria compressa contiene circa il 21% in volume di ossigeno, i progettisti giapponesi svilupparono il siluro Tipo 93 (e poi altri modelli tra i 450 e i 610 mm di calibro) appositamente per i cacciatorpediniere negli anni trenta, che utilizzava ossigeno puro invece che aria compressa, e offrì prestazioni ineguagliate nella seconda guerra mondiale. Il sistema giapponese prevedeva prima un riscaldamento del siluro utilizzando la normale procedura dell'aria calda, poi, quando il motore era a pieno regime, all'aria si sostituiva l'ossigeno, questo provocava anche una notevole diminuzione della scia del siluro, in buona parte composta da bollicine di azoto incombusto, rendendo non solo i siluri molto più prestanti in termini di velocità e di gittata, ma anche più difficili da rilevare. In compenso i siluri a ossigeno liquido erano molto suscettibili a esplodere rovinosamente se colpiti dal tiro nemico, e infatti i cacciatorpediniere giapponesi disponevano di protezioni anti schegge (insufficienti come si vide) per impedire l'esplosione prematura dei propri siluri durante il combattimento.
A vapore
Derivato dal siluro ad aria compressa era il siluro a vapore. Doveva essere rifornito di vapore surriscaldato dalle caldaie della nave attaccante prima del lancio, il che era uno svantaggio visto che il vapore non poteva essere immagazzinato pronto all'uso.
A filo
Il siluro Brennan conteneva due fili avvolti attorno a dei tamburi rotanti. Un argano a vapore posto sulla riva metteva in moto i fili che facevano ruotare i tamburi e questi a loro volta le eliche. Tale sistema rimase in uso per la difesa costiera britannica dal 1887 al 1903. La velocità era di circa 25 nodi e il raggio d'azione di oltre 2400 metri.
A volano
Un'altra fonte di energia meccanica è il volano. Il siluro Howell, in uso presso la marina degli Stati Uniti alla fine del XIX secolo, era dotato di un pesante volano che veniva messo in moto prima del lancio. Era in grado di viaggiare per circa 750 metri a una velocità media di 30 nodi. Il vantaggio di tale sistema era l'assenza della scia di bolle che caratterizzava i siluri ad aria compressa, il che dava al bersaglio meno possibilità di individuare il siluro in arrivo e di sfuggirgli, inoltre non rivelava la posizione dell'attaccante.
A propulsione elettrica
Per le stesse ragioni appena citate, i progettisti si applicarono allo sviluppo di un sistema a propulsione elettrica. Nel 1873John Ericsson inventò un siluro alimentato via cavo da una fonte di energia esterna, poiché le batterie elettriche del tempo non erano sufficientemente potenti.
La Germania fu la prima nazione a schierare un siluro elettrico prima della seconda guerra mondiale, il G7e. Era più lento e con un raggio d'azione minore rispetto alla propria controparte convenzionale G7a, ma privo di scia e più economico da produrre. D'altra parte utilizzava una batteria ricaricabile sensibile ai traumi, richiedeva inoltre manutenzione frequente, e doveva essere riscaldato prima del lancio per le prestazioni migliori. Per superare queste restrizioni si ricercarono altre fonti di energia.
Il modello sperimentale G7ep, uno sviluppo del G7e, usava pile primarie come i moderni siluri elettrici. Le batterie a ossido d'argento sono le più utilizzate nei siluri elettrici del dopoguerra come il Mark 24 Tigerfish o serie DM2. Una batteria del genere non necessita di manutenzione e un siluro con essa equipaggiato può essere immagazzinato per anni senza perdere in prestazioni.
Moderni sistemi di propulsione
I moderni siluri utilizzano una varietà di fonti energetiche tra cui monopropellenti come l'idrazina e il perossido di idrogeno, e il gas solfuro esafluorato spruzzato su un blocco di litio solido. Alcuni siluri come il russo VA-111 Shkval usano la supercavitazione per incrementare la loro velocità oltre i 200 nodi.
Classi di siluri e dimensioni
I siluri vengono lanciati con diversi metodi:
Da un "collare di lancio" montato sul ponte (come sulle siluranti statunitensi dette PT boat nella seconda guerra mondiale, e prima ancora dai MAS italiani della prima guerra mondiale).
Da un tubo lanciasiluri montato su un supporto mobile (comune nei cacciatorpediniere) o fisso (posto sopra o sotto la linea di galleggiamento delle unità di superficie, come negli incrociatori, nelle corazzate, e nei mercantili armati), o a bordo di un sommergibile.
Come stadio finale di un'arma composta, con propulsione a razzo o a getto ("siluri assistiti").
Molte marine militari hanno due tipi di siluri distinti in base al peso:
Siluri leggeri utilizzati primariamente per attacco a breve raggio, montati specialmente sugli aerei.
Siluri pesanti utilizzati come arma di punta, specie dai sottomarini in immersione.
Per i siluri posizionati sul ponte o lanciati da tubi lanciasiluri, il diametro è ovviamente un fattore chiave nel determinare la possibilità di utilizzare un particolare siluro, similmente al calibro per le armi da fuoco. La lunghezza non è così importante come per una canna di fucile, il diametro è quindi diventato il parametro di classificazione più comune per i siluri.
Lunghezza, peso e altri fattori influenzano anch'essi la compatibilità. Nel caso di siluri lanciati da aerei, i fattori chiave sono il peso, la presenza di punti di aggancio e la velocità di lancio. I siluri assistiti rappresentano lo sviluppo più recente e sono di solito progettati come un pacchetto integrato. Versioni inizialmente nate per aviolancio o lancio assistito sono state talvolta sviluppate a partire da versioni per ponte o tubo lanciasiluri e in almeno un caso fu progettato un tubo lanciasiluri per sottomarino in grado di lanciare siluri per aereo.
Come in tutti i progetti di munizioni, anche in questo campo si cerca un compromesso tra l'esigenza di standardizzazione, che semplifica la produzione e la logistica, e la specializzazione, che tende a rendere l'arma molto più efficace. Piccoli miglioramenti nella logistica o nell'efficacia possono entrambi tradursi in enormi vantaggi operativi.
Alcuni diametri più comuni di siluro (si utilizza la denominazione più comune, metrica o in pollici, e si elencano in ordine di grandezza crescente):
12,75 pollici (circa 324 mm), è la misura più comune per i siluri leggeri.
16 pollici (406 mm), era la misura dei primi siluri sovietici antisottomarini. I tubi di lancio da 16 pollici erano installati sulle classi Hotel, Echo e i primi esemplari della classe Delta, spesso in aggiunta a tubi da 21 pollici.
17,7 pollici (450 mm), era la misura standard per i siluri leggeri della Marina imperiale giapponese. Talvolta ci si riferisce a questa misura come a "18 pollici". I siluri da 18 pollici furono i più impiegati tra il 1880 e il 1916 circa, quando iniziarono a diffondersi veramente i 21 pollici, in precedenza limitati a pochi progetti, i "18 pollici" rimasero però molto impiegati anche in Europa (Italia inclusa) come siluri per le unità leggere (MAS, MS, E-boat, ecc. accanto ai 21 pollici dopo il 1935) e per alcuni sottomarini, sia leggeri, sia pesanti (come la classe Ammiragli della Regia Marina) per crociere molto lunghe contro il traffico mercantile e non militare.
480 mm, calibro poco usato, soprattutto dagli USA (Mark 27) come siluro anti sommergibile "pesante" (il MArk 27 fu la prima arma americana autoguidata, in particolare studiata per seguire il rumore delle eliche, e fu in servizio dalla fine del 1944 alla fine degli anni sessanta, rimanendo in magazzino per qualche anno ancora sia in USA sia negli arsenali alleati). Dopo gli anni settanta questo calibro è stato progressivamente abbandonato.
21 pollici (533 mm), è la misura più comune per i siluri pesanti, e s'impose nel corso della prima guerra mondiale, comprendendo:
Alcuni siluri sovietici e russi, compresi gli odierni modelli antisottomarino.
I siluri da 550 mm e 500 mm, calibri oggi in sostanziale disuso ma utilizzati dalla marina francese (e ampiamente esportati dalle industrie francesi, soprattutto il primo) tra gli anni immediatamente precedenti alla prima guerra mondiale e il secondo dopoguerra, quando, lentamente, la marina francese si adattò a utilizzare i normali calibri NATO sulle unità di nuova progettazione.
24 pollici (610 mm), furono usati dalla Marina imperiale giapponese, il più noto è il Tipo 93 montato su ponte, inoltre alcuni siluri kamikazeKaiten.
650 mm è il maggior diametro utilizzato dalla Marina russa (il Tipo 65). Sono stati messi a punto adattatori per lanciare siluri da 533 mm con tubi da 650 mm.; occasionalmente tale calibro fu impiegato tra il 1905 e il 1920 per le unità maggiori (corazzate, incrociatori da battaglia) tedesche e britanniche, dove era preferito a quelli da 21 pollici per la gittata superiore e paragonabile a quella dell'artiglieria secondaria. Dopo la prima guerra mondiale ci si rese conto che molto raramente (praticamente mai) le unità da battaglia facevano uso di siluri, eliminandoli quindi da queste unità, comunque le corazzate classe Nelson, (varate poco dopo la prima guerra mondiale) disponevano di quattro tubi lancia siluri da 622 mm derivati da quelli da 650mm progettati durante la prima guerra mondiale, ma con un impianto propulsivo ad aria ossigenata (ovvero arricchita d'ossigeno e impoverita d'azoto) e un dispositivo duplex (ovvero esplodevano sia a contatto sia quando passavano sotto una massa metallica).
Siluri di dimensioni ancora maggiori sono stati installati su alcuni sottomarini nucleari: 660 mm (26 pollici), 30 pollici (762 mm) e 36 pollici (circa 914 mm). I tubi di lancio sono stati progettati per lanciare munizioni di grande diametro come missili da crociera, così come il siluro standard da 21 pollici.
Frederick J. Milford, "U.S. Navy Torpedoes: Part One--Torpedoes through the Thirties", The Submarine Review, April 1996. (pubblicazione trimestrale della Naval Submarine League, P.O. Box 1146, Annandale, VA, 22003)
______."U.S. Navy Torpedoes: Part Two--The Great Torpedo Scandal, 1941-43". The Submarine Review, October 1996.
______."U.S. Navy Torpedoes: Part Three--WW II development of conventional torpedoes 1940-1946". The Submarine Review, January 1997.
The Columbia Encyclopedia, Sixth Edition, online.
Milton F. Perry, Infernal Machines: The story of Confederate submarine and mine warfare, Louisiana State University Press, 1985.
R.O. Crowley, "Confederate Torpedo Service" in The Century / Volume 56, Issue 2, The Century Company, New York, giugno 1898.
British strip cartoon published in the Daily Mirror from 1919 to 1956 This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2010) (Learn how and when to remove this template message) Pip, Squeak and WilfredAuthor(s)Bertram LambAustin Bowen PayneCurrent status/scheduleConcludedLaunch date1919End date1956Publisher(s)Daily Mirror, Sunday PictorialGenre(s)Hum...
Daniel JohnsonDatos personalesNacimiento Carnarvon, Australia Occidental, Australia3 de mayo de 1988 (35 años)Nacionalidad(es) AustralianaAltura 2,12 m (6′ 11″)Peso 108 kg (238 lb)Carrera deportivaDeporte BaloncestoEquipo universitario PepperdineClub profesionalDraft de la NBA No elegido, 2009Debut deportivo 2008 Melbourne TigersClub Adelaide 36ersLiga NBL AustraliaPosición PívotTrayectoria Melbourne TigeRs (2008 - 2010) Willetton Tigers (2010) Adelaide 36ers (2010...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) جورج سانت جون معلومات شخصية تاريخ الميلاد 14 أبريل 1878 تاريخ الوفاة 19 فبراير 1934 (55 سنة) مواطنة أستراليا الحياة العملية المهنة لاعب كرة قدم أسترالية...
Menteri Wilayah Persekutuan Malaysiaمنتري ولايه ڤرسكوتوان مليسياLambangKementerian Wilayah PersekutuanGelarYang Berhormat Menteri(Yang Terhormat Menteri)Ditunjuk olehYang di-Pertuan Agong atas rekomendasi Perdana Menteri MalaysiaDibentuk1976 (1976)Pejabat pertamaHassan Adli ArshadPejabat terakhirShahidan KassimJabatan dihapus24 November 2022 (2022-11-24)Situs webSitus web resmi Berikut adalah daftar orang yang pernah menjabat sebagai Menteri Wilayah Persekut...
Шарлотта ПеррелліCharlotte Perrelliшвед. Charlotte Perrelli Ім'я при народженні Анна Дженні Шарлотта Нільсон (Anna Jenny Charlotte Nilsson)Народилася 7 жовтня 1974(1974-10-07) (49 років) Швеція, ХовманторпГромадянство ШвеціяДіяльність співачкаЗнання мов шведська і англійськаЧленство Anders Engbergsd і&...
Gereja Persekutuan Misi Injil IndonesiaLogo GPMIIPenggolonganProtestanPemimpinPdt. Dwi Muji Wiranto, S.ThDidirikan6 Desember 1988 Samarinda, Kalimantan TimurNama lainGPMIISitus web resmihttps://www.sinodegpmii.or.id[1] Gereja Persekutuan Misi Injil Indonesia (disingkat: GPMII) adalah salah satu gereja Kristen Protestan di Indonesia. GPMII merupakan buah pelayanan dari Badan Misi The Chinese Foreign Missionary Union (CFMU) yang sudah berkiprah sejak tahun 1928. Sinode GPMII dibentuk pa...
Berlin-Mahlsdorf redirects here. For the railway station, see Berlin-Mahlsdorf station. Quarter of Berlin in GermanyMahlsdorf Quarter of Berlin Friedrich Schiller elementary school Coat of armsLocation of Mahlsdorf in Marzahn-Hellersdorf district and Berlin Mahlsdorf Show map of GermanyMahlsdorf Show map of BerlinCoordinates: 52°30′22″N 13°36′54″E / 52.50611°N 13.61500°E / 52.50611; 13.61500CountryGermanyStateBerlinCityBerlin BoroughMarzahn-Hellersdorf Foun...
2012 North Carolina Attorney General election ← 2008 November 6, 2012 (2012-11-06) 2016 → Nominee Roy Cooper Party Democratic Popular vote 2,828,941 Percentage 100.0% County resultsCooper: 100% Attorney General before election Roy Cooper Democratic Elected Attorney General Roy Cooper Democratic Elections in North Carolina Federal government U.S. President 1792 1796 1800 1804 1808 1812 1816 1820 1824 1828 1832 1836 ...
Politics of Mongolia Constitution Human rights Human Rights Commission LGBT rights Constitutional history Executive President (list) Ukhnaagiin Khürelsükh Prime Minister (list) Luvsannamsrain Oyun-Erdene Parliament State Great Khural Speaker: Gombojavyn Zandanshatar Current members Judiciary Supreme Court Constitutional Court Elections Recent elections Presidential: 20172021 Parliamentary: 20162020 Political parties Administrative divisions Aimags (provinces) Sumd (districts) Foreign relati...
See also: Indian New Year's days NavrehA Navreh Thaal marks the beginning of the new yearAlso calledKashmiri New YearObserved byKashmiri HindusTypeSocial, Cultural, ReligiousCelebrationsRitualsDateChaitra Shukla Pratipada2022 date2 April (Saturday)2023 date22 March (Wednesday)2024 date9 April (Tuesday)FrequencyAnnualRelated toChaitra Navaratri, Ugadi, Gudi Padwa Explanatory noteHindu festival dates The Hindu calendar is lunisolar but most festival dates are specified ...
Questa voce o sezione sull'argomento centri abitati dell'Umbria non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Questa voce sull'argomento centri abitati dell'Umbria è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. CannaiolafrazioneLocalizzazioneStato Italia Regione Umbria Provincia Perugia Comune T...
Overview of the culture of Darjeeling, (India) Colourful Buddhist prayer flags around Mahakal Temple at Observatory Hill, Darjeeling. St. Andrew's Church, Darjeeling. Built- 1843, Rebuilt- 1873 St. Andrew's Church, Darjeeling. A view from the downhill side road, May'17 The culture of Darjeeling, India, is diverse and has a regional distinctness.[1] Festivals The two predominant religions are Hinduism and Vajrayana Buddhism. Dashain, Tihar, Buddha Jayanti, Christmas, Holi, Ram Navami, ...
Building on the Southern Illinois University Carbondale campus Faner HallGeneral informationTypeEducationalArchitectural styleBrutalist architectureLocationSouthern Illinois University CarbondaleAddress1000 Faner DriveCarbondale, Illinois 62901Coordinates37°42′54″N 89°13′08″W / 37.715°N 89.219°W / 37.715; -89.219Current tenantsSIUC College of Liberal ArtsUniversity MuseumCompleted1974[1]Cost$12.75 millionOwnerSouthern Illinois University CarbondaleD...
English priest and scholar The ReverendJohn ColetPortrait drawing by Hans Holbein the YoungerBornJanuary 1467London, EnglandDied16 September 1519(1519-09-16) (aged 52)London, EnglandAlma materMagdalen College, OxfordEraRenaissance philosophyRegionWestern philosophySchoolRenaissance humanismMain interestsTheology John Colet (January 1467 – 16 September 1519) was an English Catholic priest and educational pioneer. Colet was an English scholar, Renaissance humanist, theologian, membe...
Turkmenistan padaOlimpiadeKode IOCTKMKONKomite Olimpiade Nasional TurkmenistanMedali 0 1 0 Total 1 Penampilan Musim Panas1996200020042008201220162020Penampilan terkait lainnya Kekaisaran Rusia (1900–1912) Uni Soviet (1952–1988) Tim Persatuan (1992) Turkmenistan telah berkompetisi dalam enam Olimpiade Musim Panas, mula-mula tampil dalam 1996. Negara tersebut tak pernah berkompetisi dalam Olimpiade Musim Dingin Pranala luar Turkmenistan. International Olympic Committee. ...
Азербайджано-иранские отношения Иран Азербайджан Посольство Ирана в Азербайджане Посол Сейед Аббас Мусави Адрес Баку, ул. Б. Сардарова, 4; ул. Шарифзаде, 17 Посольство Азербайджана в Иране Посол Али Ализаде Адрес Тегеран, Rastovan St., 16; 3rd Neyestan St., Pasdaran Прочее Установлены 12 марта ...
ZenobiaThe play's heroine Queen ZenobiaWritten byArthur MurphyDate premiered27 February 1768[1]Place premieredTheatre Royal, Drury LaneOriginal languageEnglishGenreTragedy Zenobia is a 1768 tragedy by the Irish writer Arthur Murphy.[2] It is based on the life of Zenobia, ruler of the Palmyrene Empire in Syria and her defiance of Ancient Rome.[3] The original Drury Lane cast included Ann Street Barry as Zenobia, Spranger Barry as Rhadamistus, Charles Holland as Teribarz...