A Titius–Bode-szabály (ejtsd: tíciusz-bóde)[1] vagy Bode-szabály annak a megfigyelése, hogy a Naprendszer bolygóinak pályái egyszerű mértani szabályszerűség szerint követik egymást.
1741-ben, amikor a bolygótávolságokat még csak egymáshoz viszonyítva ismerték, Christian von Wolff német csillagász észrevette, hogy a bolygótávolságok számsorában valami különös tapasztalható. A távolságok nem véletlenszerűek, hanem valamilyen törvényszerűség szerint követik egymást. A valódi távolságtól való eltérés (a sorba nem illeszthető Neptunuszt illetve az Erist leszámítva) minden bolygó esetében 5%-on belül van.
E törvényt Johann Daniel Titius német csillagász-matematikus említette először 1766-ban. Erre talált rá 1772-ben a berlini csillagvizsgáló igazgatója, Johann Elert Bode, aki 1778-ban öntötte végleges formába.
Másképp felírva:
Sok csillagász úgy gondolta, hogy ez csupán véletlen számtani egyezésnek tűnik, számokkal való játéknak, különösebb tartalom nélkül. Az egyezéseket azonban mégsem lehetett egyszerűen figyelmen kívül hagyni. Annak ellenére, hogy a törvény a nagyobb teljesítményű távcsövek megjelenése előtt jelent meg, figyelemre méltó előrejelzéseket adott. A szabály látszólagos igazolására először 1781-ben került sor, mikor William Herschel felfedezte az Uránuszt. Az eredmények alapján az 1700-as évek végén rendszeresen kutatva kezdték el keresni a 2,8 CsE távolságban keringő „hiányzó” bolygót. 1801. január 1-jén Giuseppe Piazzi felfedezte a hiányzó, új „bolygót”, a Cerest. Ahhoz túl kicsi volt, hogy a hiányzó bolygó hézagát „betömje”, de újraélesztette a Bode-szabály érvényességébe vetett hitet. Ennek hatására ezen a pályán egymás után több kisebb égitestet fedeztek fel (Pallas – 1802, Juno – 1804, Vesta – 1807). 1846-ban a francia Urbain Le Verrier és az angol John C. Adams egymástól függetlenül kiszámították az Uránusz pályaháborgásaiból egy lehetséges külső bolygó pozícióját, amit J.G. Galle fedezett fel. Távolságára 30,1 CsE-t mértek, a Bode-szabály szerint 38,8 CsE-nek kellett volna lennie.
A Titius–Bode-szabályra szilárd elméleti bizonyosság nincs, de valószínűleg a pályarezonancia és a szabadságfokok hiányának kombinációjával magyarázható: bármilyen stabil bolygórendszerben kellően magas valószínűséggel létrejön egy Titius–Bode-féle összefüggés. Emiatt inkább szabálynak, mintsem törvénynek lehet nevezni.
A nagyobb keringő testek pályarezonanciái olyan régiókat hoznak létre a Nap körül, amelyekben nem alakulhatnak ki hosszú időn keresztül stabil bolygópályák. Másképpen fogalmazva ez azt jelenti, hogy a stabil pályák bizonyos Naptól mért távolságokra korlátozódnak. A bolygókeletkezési szimulációk eredményei alátámasztják az elképzelést, hogy egy véletlenszerűen választott stabil bolygórendszer pályái valószínűleg kielégítenének egy Titius–Bode-szerű szabályt.
Dubrulle és Graner[2][3] megmutatták, hogy a hatvány szerinti távolsági szabályok azon bolygórendszerek „összeomló felhő”-típusú modelljeinek következményei lehetnek, amelyek kétféle szimmetriával rendelkeznek: rotációs invarianciával (a felhő és tartalma tengelyesen szimmetrikus) és skálainvarianciával (a felhő és tartalma egyformán néz ki minden hosszúsági skálán). Ez utóbbi sok jelenség jellemzője. Megfontolandó, hogy afféle szerepet játszik a bolygórendszer kialakulásakor, mint a turbulencia.
Meglehetősen kevés rendszer van, amin a Bode-szabályt tesztelhetik. A nagybolygók közül kettőnek sok nagy holdja van, amelyek talán hasonló módon keletkeztek, mint maguk a bolygók. A Jupiter négy nagy holdja – Galilei-holdak – és a legnagyobb belső hold – az Amalthea – távolságértékeiben szabályszerűség látszik, de nem Bode-távolságokra az anyabolygótól. A négy belső hold keringési ideje az őt követő hold keringési idejének körülbelül a kétszerese (1,769 – 3,551 – 7,155 – 16,68 nap). Az Uránusz nagyobb holdjainak is van szabályszerűségük, de ennek távolságértékei nem követik a Bode-szabályt.
A Naprendszer szomszédos bolygópályáinak rezonanciái:
A Titius–Bode-szabály exobolygórendszerekre is érvényes lehet: eddig az öt bolygóval övezett 55 Cancri rendszerében vizsgálták, és a módosított képlet két további bolygót is megjósolt.[4]
A Szobrász csillagképben található TOI-178 katalógusjelű csillag vizsgálatakor a következő pálya rezonanciát (ismétlődést) figyelték meg: az öt külső bolygó keringési idejének aránya a 18:9:6:4:3 lánccal írható le: mialatt a csillagtól számított második bolygó (az első a rezonancialáncban) 18 keringést végez, a harmadik bolygó (a második a rezonancialáncban) 9 keringést, és így tovább. [5]
Extraszoláris bolygórendszerek rezonanciapályái:[6]