A számelméletben a Lucas–Carmichael-számok olyan pozitív, összetett egész n számok, amikre igaz, hogy ha p prímtényezője n-nek, akkor p + 1 osztója n + 1-nek. Nevüket Édouard Lucas-ról és Robert Carmichaelről kapták.
Megegyezés szerint csak páratlan és négyzetmentes számokat tekintünk Lucas–Carmichael-számnak, egyébként bármilyen prím köb, pl. a 8 vagy a 27 is triviálisan eleget tenne a definíciónak (hiszen n3 + 1 = (n + 1)(n2 − n + 1) mindig osztható n + 1-gyel).
A legkisebb ilyen szám a 399 = 3 × 7 × 19; 399+1 = 400; 3+1, 7+1 és 19+1 mind osztói a 400-nak.
Az első néhány Lucas–Carmichael-szám és prímtényezőik: (A006972 sorozat az OEIS-ben):
A legkisebb, öt prímtényezővel rendelkező Lucas–Carmichael-szám az 588455 = 5 × 7 × 17 × 23 × 43.
Nem ismert, hogy létezik-e olyan Lucas–Carmichael-szám, ami egyben Carmichael-szám is.