Teora
|
Read other articles:
Робби Бенсон Общая информация Полное имя Роберт Бенсон Родился 7 июня 1992(1992-06-07) (31 год)Атлон, Ирландия Гражданство Ирландия Рост 178 см Позиция полузащитник Информация о клубе Клуб Дандолк Номер 8 Клубная карьера[* 1] 2008—2010 Атлон Таун 38 (5) 2011—2015 ЮКД 127 (29) 2016—2019 Данд...
岐阜県出身の人物一覧(ぎふけんしゅっしんのじんぶついちらん)は、Wikipedia日本語版に記事が存在する岐阜県出身の人物の一覧表である。 公人 政治家 青木茂(第23・24代豊橋市長) 大野明(第45代労働大臣、第63代運輸大臣、衆議院議員、参議院議員)- 山県市出身 大野伴睦(第42・43代衆議院議長)- 山県市出身 金子一平(第83代大蔵大臣、衆議院議員)- 高山市出身
Опис файлу Опис Всеукраїнська науково-практична конференція у ВННІЕ ТНЕУ, 2015 р. Джерело Власна робота Час створення 2015 Автор зображення RomanivTaras Ліцензія див. нижче Ліцензування Я, власник авторських прав на цей твір, публікую його на умовах таких ліцензій: Дозволено копіюв
First Lim Yew Hock Cabinet2nd Cabinet of SingaporeDate formed7 June 1956Date dissolved3 June 1959People and organisationsHead of stateRobert BlackWilliam GoodeHead of governmentLim Yew HockNo. of ministers8Total no. of members8Member partyLabour FrontUnited Malay National OrganisationMalayan Chinese AssociationStatus in legislatureMinority 11 / 32Opposition partyMalay UnionPeople's Action PartyOpposition leaderLee Kuan YewHistoryPredecessorFirst David Marshall CabinetSuccessorI Lee Kuan Yew A...
Highest-ranking student in a class Valedictorian is an academic title for the highest-performing student of a graduating class of an academic institution. Image of a valedictorian giving his speech at graduation The valedictorian is commonly determined by a numerical formula calculated over the entire course of one's high school education. Generally an academic institution's grade point average (GPA) system is used, but other methods of selection may be used or factored in such as volunteer w...
Indian film director This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: B. V. Nandini Reddy – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this template...
Seri 955 300XShinkansen seri 955 300X berjalan secara sepur salah di Stasiun Gifu-Hashima saat uji coba di siang hariBeroperasi1994–2002PembuatHitachi, Kawasaki Heavy Industries, Mitsubishi Heavy Industries, Nippon SharyoTahun pembuatan1994Tahun diafkirkan2002Jumlah sudah diproduksi6 kereta (1 rangkaian)Jumlah beroperasiTidak adaJumlah disimpan2 keretaJumlah diafkirkan4 keretaFormasi6 keretaNomor armadaA0OperatorJR CentralDipoTokyoJalurTōkaidō ShinkansenData teknisBodi keretaAlumuniumPanj...
Katedral ShanghaiKatedral Santo Ignatius di ShanghaiHanzi: 圣依纳爵主教座堂Katedral ShanghaiKoordinat: 31°11′35″N 121°25′53″E / 31.19306°N 121.43139°E / 31.19306; 121.43139LokasiXujiahui, ShanghaiNegara TiongkokDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Shanghai Katedral Shanghai atau yang bernama resmi Katedral Santo Ignatius (Hanzi: 圣依纳爵主教座堂), juga dikenal ...
Welche Figur der unteren Reihe setzt die obere Reihe sinnvoll fort? Ein typisches Beispiel eines Matrizentests, richtige Lösung: d Ein Intelligenztest ist ein Instrument der psychologischen Diagnostik zur Messung der Intelligenz einer Person. Da Intelligenz unterschiedlich definiert wird, gibt es sehr verschiedenartige Intelligenztests. Dabei geht man davon aus, dass Leistungsunterschiede in Intelligenztests auch Unterschiede der kognitiven Leistungsfähigkeit im täglichen Leben abbilden. P...
باراماونت بيكتشرزParamount Pictures (بالإنجليزية) الشعارمعلومات عامةالجنسية الولايات المتحدة التأسيس 8 مايو 1912 النوع شركة إنتاج أفلام المقر الرئيسي لوس أنجلوس على الخريطة موقع الويب paramountpictures.com (الإنجليزية) المنظومة الاقتصاديةالشركة الأم باراماونت غلوبل (2019 – ) الشركات التابعة...
Logo d'ouverture de Skins Cet article présente le guide des épisodes de la série télévisée Skins. Liste des saisons Saisons Générations Épisodes Diffusion originale Diffusion française Sortie des DVD Zone 2 Angleterre Zone 2 France 1 1 10 25 janvier 2007 – 22 mars 2007 sur E4 6 décembre 2007 – 31 janvier 2008 sur Canal+7 janvier 2009 – 4 février 2009 sur Virgin 1711 janvier 2009 – 8 février 2009 sur June 24 septembre 2007 25 mars 2008 2 1 10 11 février 2008 – 14 avril ...
Novel trilogy by Philip Pullman For other uses, see His Dark Materials (disambiguation). His Dark MaterialsFirst combined edition (publ. Ted Smart, 2000) Northern Lights The Subtle Knife The Amber Spyglass AuthorPhilip PullmanCountryUnited KingdomLanguageEnglishGenreFantasy novelPublisherScholasticPublished1995–2000Media typePrint (hardback & paperback) His Dark Materials is a trilogy of fantasy novels by Philip Pullman consisting of Northern Lights (1995; published as The Golden Compas...
2011 Egyptian film by Ahmad Abdalla, Amr Salama Tahrir 2011 : The Good, The Bad and the PoliticianDirected byTamer Ezzat Ahmad Abdalla Ayten Amin Amr SalamaProduced byFrederic Sichler Mohamed HefzyDistributed byPacha PicturesRelease date September 8, 2011 (2011-09-08) (Venice) Running time90 minutesCountryEgyptLanguageArabic Tahrir 2011: The Good, the Bad and the Politician (Arabic: تحرير 2011: الطيب والشرس والسياسي) is an Egyptian documentary d...
GD-ROMGD-ROM logo.pngGdrom.jpgBagian belakang cakram GD-ROMJenis mediaCakram optikKapasitas1 GB[1]PengembangYamahaPenggunaanDreamcastSega NAOMITriforceSega Chihiro Cakram optis Umum Cakram optis Penggerak cakram optis Optical disc authoring Authoring software Teknologi perekaman Recording modes Packet writing Burst cutting area Jenis cakram Compact disc (CD): CD-DA, CD-ROM, CD-R, CD-RW, 5.1 Music Disc, Super Audio CD (SACD), Photo CD, CD Video (CDV), Video CD (VCD), Super Video CD (SV...
Czech nobleman Count Philip Joseph Kinsky of Wchinitz and Tettau Count Philip Joseph Kinsky of Wchinitz and Tettau (Czech: Filip Josef Kinský z Vchynic a Tetova; German: Philipp Joseph Graf Kinsky von Wchinitz und Tettau) (28 November 1700 – 12 January 1749) was High chancellor of the Kingdom of Bohemia during the reign of Queen Maria Theresa.[1] Early life Born in Prague as a member of the House of Kinsky, Philip was the son of Count Wenceslaus Kinsky von Wchinitz und Tettau (1642...
Тилігульський регіональний ландшафтний парк Ранжева косаРанжева коса 46°52′41″ пн. ш. 31°03′15″ сх. д. / 46.87833333002777181° пн. ш. 31.05444444002777971° сх. д. / 46.87833333002777181; 31.05444444002777971Координати: 46°52′41″ пн. ш. 31°03′15″ сх. д. / 46.87833333002777181° п...
Intention to do injury to another party This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Malice law – news · newspapers · books · scholar · J...
The Indonesian National Armed Forces (TNI) uses a simplified ranking system for the three branches of Indonesian Army, Indonesian Navy and Indonesian Air Force. Most of the ranks are similar with differences for the rank titles of the high-ranking officers. Exception exists, however, in the ranks of the service members of the Indonesian Marine Corps. While Indonesian Marine Corps is a branch of the Navy, the rank titles of the Marine Corps are the same as those of the Army, but it still uses ...
Fictional character For Brainiac, who is also known as the first Vril Dox, see Brainiac (character). Comics character Vril DoxVril Dox as depicted in L.E.G.I.O.N. '91 #27 (May 1991).Art by Dan BreretonPublication informationPublisherDC ComicsFirst appearanceSuperman #167 (February 1964) revamp: Invasion! #1 (January 1989)Created byEdmond Hamilton (writer) Cary Bates (writer) Curt Swan (artist) revamp: Keith Giffen (writer) Bill Mantlo (writer) Todd McFarlane (artist)In-story informationAlter ...
Trigonometric identity relating the sides and angles of a triangle A triangle, showing the incircle and the partitioning of the sides. The angle bisectors meet at the incenter, which is the center of the incircle. By the above reasoning, all six parts are as shown. Trigonometry Outline History Usage Functions (inverse) Generalized trigonometry Reference Identities Exact constants Tables Unit circle Laws and theorems Sines Cosines Tangents Cotangents Pythagorean theorem Calculus Trigonome...