Law of cotangents

A triangle, showing the "incircle" and the partitioning of the sides. The angle bisectors meet at the incenter, which is the center of the incircle.
By the above reasoning, all six parts are as shown.

In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles.[1][2]

Just as three quantities whose equality is expressed by the law of sines are equal to the diameter of the circumscribed circle of the triangle (or to its reciprocal, depending on how the law is expressed), so also the law of cotangents relates the radius of the inscribed circle of a triangle (the inradius) to its sides and angles.

Statement

Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = a + b + c/2, and r is the radius of the inscribed circle, the law of cotangents states that

and furthermore that the inradius is given by

Proof

In the upper figure, the points of tangency of the incircle with the sides of the triangle break the perimeter into 6 segments, in 3 pairs. In each pair the segments are of equal length. For example, the 2 segments adjacent to vertex A are equal. If we pick one segment from each pair, their sum will be the semiperimeter s. An example of this is the segments shown in color in the figure. The two segments making up the red line add up to a, so the blue segment must be of length sa. Obviously, the other five segments must also have lengths sa, sb, or sc, as shown in the lower figure.

By inspection of the figure, using the definition of the cotangent function, we have and similarly for the other two angles, proving the first assertion.

For the second one—the inradius formula—we start from the general addition formula:

Applying to we obtain:

(This is also the triple cotangent identity.)

Substituting the values obtained in the first part, we get: Multiplying through by r3/s gives the value of r2, proving the second assertion.

Some proofs using the law of cotangents

A number of other results can be derived from the law of cotangents.

  • Heron's formula. Note that the area of triangle ABC is also divided into 6 smaller triangles, also in 3 pairs, with the triangles in each pair having the same area. For example, the two triangles near vertex A, being right triangles of width sa and height r, each have an area of 1/2r(sa). So those two triangles together have an area of r(sa), and the area S of the whole triangle is therefore

This gives the result as required.

This gives the result as required.

Here, an extra step is required to transform a product into a sum, according to the sum/product formula.

This gives the result

as required.

Other identities called the "law of cotangents"

The law of cotangents is not as common or well established as the laws of sines, cosines, or tangents, so the same name is sometimes applied to other triangle identities involving cotangents. For example:

The sum of the cotangents of two angles equals the ratio of the side between them to the altitude through the third vertex:[3]

The law of cosines can be expressed in terms of the cotangent instead of the cosine, which brings the triangle's area into the identity:[4]

Because the three angles of a triangle sum to the sum of the pairwise products of their cotangents is one:[5]

See also

References

  1. ^ The Universal Encyclopaedia of Mathematics, Pan Reference Books, 1976, page 530. English version George Allen and Unwin, 1964. Translated from the German version Meyers Rechenduden, 1960.
  2. ^ It is called the 'theorem of the cotangents' in Apolinar, Efraín (2023). Illustrated glossary for school mathematics. Efrain Soto Apolinar. pp. 260–261. ISBN 9786072941311.
  3. ^ Gilli, Angelo C. (1959). "F-10c. The Cotangent Law". Transistors. Prentice-Hall. pp. 266–267.
  4. ^ Nenkov, V.; St Stefanov, H.; Velchev, A. Cosine and Cotangent Theorems for a Quadrilateral, two new Formulas for its Area and Their Applications (PDF) (Preprint).
  5. ^ Sheremet'ev, I. A. (2001). "Diophantine Laws for Nets of the Highest Symmetries" (PDF). Crystallography Reports. 46 (2): 161–166. Bibcode:2001CryRp..46..161S. doi:10.1134/1.1358386.
  • Silvester, John R. (2001). Geometry: Ancient and Modern. Oxford University Press. p. 313. ISBN 9780198508250.

Read other articles:

Mihika VarmaLahir3 Januari 1985 (umur 38)Mumbai, IndiaKebangsaanIndianPekerjaanaktrismodelTahun aktif2004–2016Karya terkenalYeh Hai MohabbateinSuami/istriAnand KapaiAnak1 Mihika Varma (lahir 3 Januari 1985) adalah seorang aktris televisi India dan mantan model yang dikenal karena perannya sebagai Mihika Khanna di Yeh Hai Mohabbatein. Dia memenangkan gelar Miss India International pada tahun 2004 dan mewakili India dalam kompetisi Miss International 2004.[1] Kehidupan priba...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dresden International School – news · newspapers · books · scholar · JSTOR (June 2011) (Learn how and when to remove this template message) International School Dresden Dresden International School (German: Internationale Schule Dresden e.V.) is an internationa...

 

المعهد الوطني للدراسات الديموغرافية الاختصار (بالفرنسية: INED)‏  البلد فرنسا  المقر الرئيسي أوبارفيلييه[1]  تاريخ التأسيس 1945  العضوية ريناتير[2]  الموقع الرسمي الموقع الرسمي  تعديل مصدري - تعديل   المعهد الوطني للدراسات الديموغرافية (INED) هي مؤسسة فرن...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. SD Swasta MashitaInformasiJenisSekolah SwastaAlamatLokasi, Batam, Kepri,  IndonesiaMoto SD Swasta Mashita, merupakan salah satu Sekolah Dasar swasta yang ada di Batam, Provinsi Kepulauan Riau. Sama dengan SD pada umumnya di Indonesia masa pendidi...

 

Das Deutsche Down-Sportlerfestival ist die größte Sportveranstaltung für Kinder, Jugendliche und junge Erwachsene mit Down-Syndrom (Trisomie 21) weltweit. Seit 2003 findet die Sportveranstaltung statt. Das Festival besuchen über 800 Teilnehmer und ihre Familien fiebern jedes Jahr diesem großen Tag entgegen. Die Sportler können in verschiedenen Sportarten zeigen, was in ihnen steckt und neue Disziplinen ausprobieren. Es ist nicht nur ein Sportereignis, sondern auch ein Ort der Begegnung,...

 

В математиці , особливо в комбінаториці , числа Стерлінга першого роду виникають при вивченні перестановок. Зокрема, числа Стірлінга першого роду підраховують перестановки відповідно до їх кількості циклів (вважаючи нерухомі точки як цикли довжиною один). Зміст 1 Означе...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) لولا كيويتو معلومات شخصية اسم الولادة (بالإسبانية: María Dolores Velázquez Rivas)‏  الميلاد 2 مارس 1897[1][2]  أزكابوتزالكو  الوفاة 24 يناير 1978 (80 سنة)   مدينة...

 

Sport Club Corinthians Paulista Voleibol Alcunhas TimãoTime do PovoCoringãoTodo PoderosoAlvinegro do Parque São JorgeCampeão dos CampeõesTime das Viradas Cores Preto e Branco           Informações Cidade Guarulhos, SP País Brasil Competição Superliga (Série A) Campeonato Paulista Ginásio Ginásio Ponte Grande(Capacidade: 3.000 espectadores) Presidente Andrés Sanchez Técnico Gersinho Patrocinadores Nike Resultados Títulos Conquistados Taç...

 

Jewish theologian David NekrutmanDavid Nekrutman, February 2019Bornדוד נקרוטמן (1973-11-28) 28 November 1973 (age 50)Brooklyn, New YorkNationalityAmerican and IsraeliEducationJudaic–Christian Studies (M.A.)Social work (MSW)Forensic psychology (B.A.)Alma materOral Roberts UniversityUniversity of PennsylvaniaJohn Jay College of Criminal JusticeOccupation(s)theologianwriterdirectorpublic speakercolumnistOrganizationsCJCUCDay to PraiseBlessing BethlehemThe Isaiah ProjectsPar...

В Википедии есть статьи о других людях с фамилией Пуришев. Иван Борисович Пуришев Основные сведения Страна  СССР →  Россия Дата рождения 26 ноября 1930(1930-11-26) Место рождения Москва, РСФСР, СССР Дата смерти 31 июля 2013(2013-07-31) (82 года) Место смерти Москва, Россия Ра...

 

1934 Eastern Suburbs season < 1933 1935 > Eastern Suburbs (now known as the Sydney Roosters) finished as runners up in the 26th New South Wales Rugby League(NSWRL) premiership in the 1934 season. Details Lineup: - Cyril Abotomey, Jack Beaton, Dave Brown(c), Frank Buchanan, John Clarke, Jack 'Buster' Craigie, Tom Dowling, T. Lang, J. Lane, Tom McLachlan, Max Nixon, Ernie Norman, Andy Norval, Joe Pearce, Henry 'Harry' Pierce, Ray Stehr, Viv Thicknesse, H. Thompson. Ladder Team P...

 

The Raceway on Belle Isle in 2008 The Detroit Sports Car Challenge presented by Bosch was the ninth round of the 2008 American Le Mans Series season. It took place at the Belle Isle temporary street circuit, Michigan on August 30, 2008. Report Andretti Green Racing scored their first overall victory, as well as the second overall victory for the Acura program. Audi failed to win the LMP1 category for the first time all season after one car crashed and the other was disqualified for a rule inf...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cass Technical High School – news · newspapers · books · scholar · JSTOR (September 2019) (Learn how and when to remove this template message) Magnet high school in Detroit, Michigan, United StatesCass Technical High SchoolThe school in 2010Address2501 Second A...

 

2020 Canadian drama film Queen of the AndesFilm posterDirected byJillian AcremanWritten byJillian AcremanProduced byArianna MartinezStarringBhreagh MacNeilHailey ChownMaggie VaughanCassidy IngersollCinematographyJesse AnthonyEdited byMatthew CarrProductioncompanyLittle Bear ProductionsRelease date September 17, 2020 (2020-09-17) (AFF) Running time92 minutesCountryCanadaLanguageEnglish Queen of the Andes is a Canadian drama film, directed by Jillian Acreman and released in 2...

 

Scottish nurse and missionary Margaret Manson Graham (26 April 1860 – 14 October 1933) was a Scottish nurse who worked as a missionary in Nigeria. Early life Margaret Manson Graham was born at Orphir, Orkney, the daughter of Isabella Manson and John Graham. Her father was a weaver. After some time as a teacher in Orphir, she went to Glasgow to train as a nurse.[1] Career As a nurse, Margaret Manson Graham joined the Women's Foreign Mission in 1895, and traveled to Calabar.[2]...

Shopping mall in Baltimore, MarylandOld Town MallOldtown MallAn abandoned storefront with the mall in the backgroundLocationBaltimore, MarylandCoordinates39°17′47″N 76°36′14″W / 39.2963°N 76.6038°W / 39.2963; -76.6038Address500 N. Gay Street, Baltimore, MD 21202Opening date1818; 205 years ago (1818) (stores open), 1968; 55 years ago (1968) (the mall itself opened)[1]No. of stores and services64No. of anchor tenant...

 

Міжнародний кримінальний суд англ. International Criminal Courtфр. Cour pénale internationale Абревіатура CPI(фр.), ICC(англ.)Тип Міжнародний трибуналміжурядова організаціяЗасновано 1 липня 2002[1]Засади Римський статут Міжнародного кримінального судуСфера міжнародне кримінальне правоКраїна ...

 

Bus station in Auckland, New Zealand Manukau bus stationBus StationThe sawtooth bus bays and reversing area of the station. The Manukau Institute of Technology can be seen in the background, below which is the connecting train stationGeneral informationLocation12 Putney Way, Manukau City Centre, Auckland New ZealandAucklandNew ZealandCoordinates36°59′36.94″S 174°52′43.44″E / 36.9935944°S 174.8787333°E / -36.9935944; 174.8787333Owned byAuckland TransportOper...

1993 single by the Smashing Pumpkins Cherub RockSingle by the Smashing Pumpkinsfrom the album Siamese Dream B-side Pissant French Movie Theme/The Star-Spangled Banner Purr Snickety ReleasedJune 21, 1993 (1993-06-21)[1]Genre Grunge[2][3] alternative rock[4] hard rock[5] Length4:58LabelVirginSongwriter(s)Billy CorganProducer(s) Butch Vig Billy Corgan The Smashing Pumpkins singles chronology Drown (1992) Cherub Rock (1993) Today (1993) Music...

 

← 1952 •  • 1964 → Elección presidencial de Chile de 1958Presidente para el período 1958-1964 Fecha Jueves 4 de septiembre de 1958 Tipo Presidencial, nivel nacional Período 3 de noviembre de 1958 al 3 de noviembre de 1964 Demografía electoral Población 7 326 000 (est.) Hab. registrados 1 497 902 Votantes 1 250 350 Participación    83.47 %  3.1 % Votos válidos 1 235 552 Resultado...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!