À la suite d'un concours d'idées lancé au sein des deux firmes, c'est Guy Lebègue[3] qui invente ce nom, par référence au programme aéronautique Airbus nommé ainsi par son ami Roger Béteille.
Un numéro d'ordre suit le nom, représentatif de la classe de poids des satellites : 1000, pour 1 000 kg, 2000 pour 2 000 kg, etc.
Le nom Spacebus est attribué également aux satellites en cours de réalisation lors du dépôt de la marque, bien que d'architecture différente (mais absolument pas aux satellites Symphonie qui sont déjà lancés depuis plusieurs années, et ne sont donc pas des plates-formes Spacebus) :
Spacebus 100 pour les satellites Arabsat de première génération.
L'idée est de développer une plate-forme générique, permettant de s'adapter aux diverses missions futures et aux évolutions des capacités des lanceurs, pour en réduire les coûts de fabrication, bénéficiant, si possible, d'un effet de série. Et, effectivement, plus d'une soixantaine de Spacebus sont réalisés, depuis les Spacebus 100 des satellites Arabsat de la classe d'une tonne, en 1981, jusqu'aux Spacebus 4000 de plus de cinq tonnes des années 2000.
L'architecture de la plate-forme est basée sur :
Une conception modulaire avec un module de charge utile en forme de U permettant une intégration en parallèle du module de service, par Aérospatiale, et des équipements de la charge utile, par un spécialiste de cette discipline, avant intégration finale et essais dans l'établissement de Cannes.
Un tube central en matériaux composites à base d'une structure en nid d'abeille et de fibres de carbone, vraie colonne vertébrale du satellite, interface avec le lanceur, abritant les deux réservoirs d'ergols. à la plate-forme sont accrochés divers panneaux comportant tous les équipements de servitude. Viennent s'y accrocher également, en finale, trois panneaux supportant les équipements de la charge utile de communication, dont deux (en nid d'abeille à faces aluminium, pour laisser transiter les calories) vont jouer le rôle de radiateurs thermiques permettant de dissiper la chaleur vers le froid spatial, par rayonnement. Au début, les éléments structuraux sont produits dans l'établissement des Mureaux d'Aérospatiale.
Après séparation de son activité Satellites, le Centre spatial de Cannes - Mandelieu se met à fabriquer des éléments en matériaux composites et, en particulier, la production de toutes les structures planes. Le tube central, nécessitant des outillages très spécialisés restant aux Mureaux, devenue EADS. Une deuxième source d'approvisionnement démarre chez SAAB en Suède.
Un contrôle thermique faisant appel aux programmes de calculs et technologies les plus sophistiquées développées à Cannes depuis le programme Symphonie : radiateurs dissipatifs, super-isolations, réchauffeurs électriques, caloducs.
Des générateurs solaires rigides, avec diverses combinaisons de panneaux, selon les puissances électriques requises.
Une propulsion chimique à base de biergols développée par MBB en Allemagne. La propulsion électrique est étudiée également, développée et introduite sur deux satellites : Stentor et Astra-1K, tous deux perdus lors d'échecs au lancement.
Divers mécanismes pour les ouvertures des panneaux solaires et des antennes, développés et produits à Cannes.
Les versions
L'évolution des plates-formes Spacebus suit celle des capacités des lanceurs de Ariane 1 jusqu'à Ariane 5. Mais il faut noter également que les Spacebus sont toujours conçus pour s'adapter à tous les lanceurs disponibles sur le marché commercial : non seulement les diverses versions d'Ariane, mais également les lanceurs Delta, Atlas, Soyouz, Proton, Longue Marche et même, exceptionnellement, pour un lancement par la navette spatiale Discovery pour l'un des modèles d'Arabsat lancé sur la mission STS-51-G.
Ces versions sont déclinées dans les rubriques suivantes. Les tableaux citent la « fin de mission », c'est-à-dire la fin d'utilisation opérationnelle ; après quoi, le satellite est souvent hors contrôle, peut-être légèrement désorbité (manœuvre fortement recommandée à l'« opérateur » du satellite), va dériver pour l'éternité, sa « fin de vie » ne voulant pas dire grand chose. Certains satellites changent d'opérateur, avant leur lancement, ou lors de leur vie orbitale. Ils peuvent même, dans ce cas, changer de position orbitale. Pour alléger cet article, la liste de tous les satellites figure dans un article séparé :
C'est la première apparition de l'architecture définitive, en 1981, avec la réalisation des trois premiers satellites Arabsat pour les 22 pays de la Ligue arabe, avec une puissance électrique de 2 kW. Un peu plus tard au cours du programme, le nom Spacebus 1000 est utilisé, pour comparaison avec les Spacebus 2000.
Lanceurs
deux des satellites sont lancés par des lanceurs Ariane, en version Ariane 3 et Ariane 4
Comme mentionné dans l'historique, ce nom est attribué aux 5 satellites de télévision directe, avec une puissance électrique de 4,3 kW, d'un programme franco-allemand :
Türk Telekom, et sa série des Türksat, premières plates-formes Spacebus délivrées « clés en main » pour la Turquie.
GE Americom, qui reprend le satellite Nahuel-1B, devenant GE-5[1], premier satellite de télécommunications européen vendu aux États-Unis, qui devient AMC 5, lors de la reprise par SES S.A. C'est la première vente d'un satellite européen aux États-Unis.
Lanceurs
Dix des onze satellites font appel à Ariane avec la perte de deux d'entre eux du fait de l'échec du lancement V63 du . Les plates-formes Spacebus deviennent les premiers clients de la société Arianespace.
Le dernier fait appel à un nouveau lanceur : Atlas.
Avec la perspective des lancements par le lanceur Ariane 5, apparaît la famille Spacebus 3000 avec des masses allant de 2 à 6 tonnes et des puissances électriques de 5 à 16 kW. Elle va se décliner en plusieurs versions, profitant de coiffes de plus en plus grandes.
Pour les versions B, la dimension de base du satellite est 2,3 × 1,8 m. Pour la version B2, la hauteur du corps de la plate-forme est 2,8 m, permettant d'accommoder une surface radiative et une puissance électrique allant jusque 6,5 kW.
Son satellite Eutelsat W5 rencontre un problème technique majeur en 2008, six ans après sa mise en service : un moteur d'entrainement en rotation d'une aile de panneaux solaires se bloque, privant le satellite de la moitié de sa puissance, obligeant l'opérateur à délester sa charge utile, arrêtant certains canaux[8].
Eurasiasat(en) (Monaco) résultant d'un accord entre Alcatel Space (25 %) et Türk Telekom (75 %), devenue Turksat Satellite Communication and Cable TV Operation AS
La société Stellat[9], créée en 2001 par France Télécom à 70 % et par Europe*Star[10] à 30 % (filiale d'Alcatel Space et de Space Systems/Loral). Le siège social est en France. En , participation FT passe à 100 %. En FT cède la société à Eutelsat. Stellat 5 prend le nom orbital de Atlantic Bird 3.
Un nouveau client : SES S.A., Luxembourg. Un seul satellite dans cette classe : Astra-1K. À cette époque, c'est le plus gros satellite de communication commercial jamais réalisé, avec une puissance de 13 kW. Il est perdu lors de son lancement du fait de l'échec du lanceur russe Proton.
La famille 4000 apparaît avec, principalement, une modification de l'avionique (Avionics 4000)[11] :
architecture électrique de la plate-forme passant de 50 à 100 volts.
ordinateur de bord, très intégré, souple et modulaire.
AOCS avec Star-tracker pour utilisation en orbite géostationnaire (une première mondiale).
Elle se décline, comme pour la série B, selon la hauteur du satellite, en 4000B2, 4000B3. Et apparaît une nouvelle version C, dont les dimensions de base sont 2,2 × 2,0 m.
Spacebus Itar-Free
Quelques satellites de cette famille sont conçus pour être Itar-Free, leur permettant l'exportation vers la Chine pour un lancement par la famille de lanceurs Longue Marche[12]. Cependant, il est révélé par la suite que ces satellites comportent bel et bien des composants américains soumis à l'ITAR, frauduleusement fournis par des entreprises américaines. Ces fournisseurs sont ainsi condamnés et Thales préfère renoncer à concevoir de tels satellites[13],[14].
Spacebus 4000B2
Cinq nouveaux clients
Telenor, Norvège, et son satellite THOR 6 pour sa filiale Telenor Satellite Broadcasting AS, destiné à remplacer le satellite THOR 3, qui arrive en fin de vie en 2010. Il est lancé par un lanceur Ariane 5 le [15].
, ministère italien de la Défense et la direction générale de l'Armement de la France, et leur satellite militaire Sicral 2, pour un montant du contrat de 295 millions d'euros[20]. Il est lancé le par un lanceur Ariane 5.
L'opérateur Korea Telecom Satellite (KTSAT) commande deux nouveaux satellites le : Koreasat 5A et Koreasat 7[21].
PT. Telekomunikasi Indonesia TbK (Telkom Indonesia), le plus important fournisseur de services et de réseaux de communication indonésien, et son satellite Telkom-3S[22].
Regional African Satellite Communication Organization, Abidjan, Côte d'Ivoire, et son Rascom-QAF1, le premier satellite de télécommunications panafricain[23]. Lancé le , il rencontre des problèmes[24] sur l'orbite de transfert géostationnaire, du fait d'une fuite d'hélium. Finalement, le , le satellite est injecté en orbite géostationnaire à la position attendue par 2,85° E. La durée de vie du satellite, qui est affinée ultérieurement, est estimée à un peu plus de 2 ans au lieu des quinze prévus[25]. Le , un second modèle est commandé pour servir de relais[26], lancé par un lanceur Ariane 5 le [17], mis en service opérationnel le suivant[18].
PT Indosat Tbk et un satellite Palapa-D pour l'Indonésie, l'Australie, les pays asiatiques et du Moyen-Orient. Palapa-D est lancé le par un lanceur Longue Marche qui, hélas, présente un défaut de fonctionnement du troisième étage, laissant le satellite sur une orbite inappropriée[27]. Le constructeur du satellite, Thales Alenia Space, tente des manœuvres de récupération[28],[29]. Celles-ci sont réussies le , remettant le satellite sur la bonne orbite de transfert géostationnaire[30]. L'opération de circularisation d'orbite et de mise en orbite géostationnaire est effectuée avec succès le [31]. Le , le satellite est déclaré opérationnel, positionné à 113° E, avec une durée supérieure à 10,5 ans[32]. Le , ce sauvetage spectaculaire vaut à Thales Alenia Space de recevoir le prix du sauvetage spatial lors du World Space Risk Forum à Dubaï[33].
Lanceurs
quatre des cinq satellites sont lancés par des lanceurs Ariane 5.
le lanceur Longue Marche 3B est utilisée pour Palapa-D, mais le lancement n'est pas parfait[27].
Apstar 7, commandé le [34], destiné à remplacer le satellite Apstar-2A, à 76,5° E et lancé le [35].
Apstar 7B, commandé le , un contrat de 112,3 millions d'euros (148,7 millions de dollars américains) comprenant aussi le centre de contrôle du satellite[36], renommé en Chinasat 12, lancé le .
puis W3D, commandé le pour remplacer le W3B perdu[50] ; lancé le par une fusée Proton[51].
Un nouveau client : Gazprom, et ses deux satellites Yamal-400, commandés au début 2009[52]. Mais la crise vient modifier ce choix, car seul le Yamal-402 est financé pour un lancement intervenant le , l'autre satellite Yamal-401 est construit sur une plate-forme franco-russe Express-2000[53].
Eutelsat W-2A, commandé le et lancé le , premier satellite équipé d'une antenne de 12 m de diamètre pour diffuser vers les mobiles en bande S sur l'Europe (Inmarsat utilise la bande L) avec une charge utile appartenant à Solaris Mobile[56].
Encore un nouveau client, l'opérateur brésilien Telebras et sa commande le de SGDC-1 (Satellite Géostationnaire de Défense et de Communications sécurisés)[57], répondant simultanément à deux objectifs, d’une part la mise en place de communications satellitaires sécurisées pour les forces armées brésiliennes et le gouvernement, et d'autre part contribue au déploiement du Plan National Large Bande (PNBL), ayant pour objectif la réduction de la fracture numérique sur le territoire. Le satellite embarque deux charges utiles, une incluant 50 transpondeurs en bande Ka offrant une capacité sur le territoire jusqu’à 80 Gbit/s et l'autre hébergeant 7 transpondeurs en bande X ; il a une masse au lancement d'environ 5,8 tonnes et une puissance satellite de plus de 11 kW, livré au sol en 31 mois[58]. Il est lancé le [59].
De nouveau, le client russe Gazprom commande un satellite Yamal-601 en [60],[61].
En , un nouveau client, Inmarsat, commande, en partenariat avec Hellas-Sat, un gros satellite Inmarsat S-Europasat / Hellas-Sat 3 (IEH)[62].
Lanceurs
le lanceur Zenit depuis Sea Launch doit lancer le satellite Eutelsat W-7. À la suite de sa faillite, le contrat est repris par ILS (International Launch Service)[63].
le lanceur Proton depuis le cosmodrome de Baïkonour, lance Ciel-2, le ; puis Eutelsat W-2A, le [64]; et enfin Eutelsat W-7 le [65], le plus puissant satellite de la flotte Eutelsat[66].
Le , Thales Alenia Space signe[67] un accord de coopération industrielle avec la société russe NPO PM, de Jeleznogorsk, pour le développement d'une plate-forme multimission de grande puissance, baptisée Express-4000, basée sur l'architecture de la plate-forme Spacebus 4000.
Express-4000 est une plate-forme, à injection directe sur une orbite géosynchrone, compatible avec le lanceur Proton, construite et intégrée à Krasnoïarsk et commercialisée par NPO PM. Elle embarque une charge utile de télécommunications construite par Thales Alenia Space.
En 2014, la gamme de plates-formes Spacebus, pour satellites de télécommunications géostationnaires, évolue et s'agrandit.
Thales Alenia Space développe sa gamme de plate-forme satellite en capitalisant sur les points forts de l'avionique 4000 et d'Alphabus, et en développant une architecture mécanique optimisée aux nouvelles demandes. La version Spacebus Neo « tout électrique », capable d'emporter des charges utiles d'une masse de plus de 1 400 kg et d’une puissance de plus de 16 kW, est disponible sur le marché à partir du milieu de l'année 2015.
↑ ab et cSylvie Moncieu (dir.), Alain Coursier (rédacteur) et al., 80 ans de passion, le site de Cannes de 1919 à 1999, Éditions Version latine, , 111 p.
↑Jean-Jacques Dechezelles, De Symphonie à Spacebus, Conférence AAAF, mars 2006, publiée sur archive-host.com,
↑Pierre Madon, « Satellites de télécommunications : demain les Spacebus - signature accord franco-allemand », dans Revue aerospatiale, no 6, février 1984
↑(fr + en) Shirley Compard, (trad. Robert J. Amral), « L'Argentine entre dans le club », dans Revue aerospatiale, no 136, mars 1997
↑Marie-Dominique Lancelot, « Thaicom 3 : la Thaïlande choisit français », dans Revue aerospatiale, no 119, juin 1995
↑(fr + en) Samuel Szdat, (trad. Robert J. Amral), « Sinosat-1 : le satellite de la révolution monétique », dans Revue aerospatiale, no 137, avril 1997
Sylvie Moncieu (dir.), Alain Coursier (rédacteur) et al., 80 ans de passion, le site de Cannes de 1919 à 1999, Éditions Version latine, , 111 p.
Jean-Jacques Dechezelles (Apsat Conseil & AAAF), « De Symphonie à Spacebus 4000 - 30 ans de succès des satellites de télécommunications », dans La Lettre AAAF, no 5, , (ISSN1767-0675), [lire en ligne].