Problème à N corps

Modélisation du mouvement de trois particules, montrant le caractère chaotique de leurs trajectoires.

Le problème à N corps est un problème de mécanique céleste consistant à déterminer les trajectoires d'un ensemble de N corps s'attirant mutuellement ; plus précisément, il s'agit de résoudre les équations du mouvement de Newton pour N corps interagissant gravitationnellement, connaissant leurs masses ainsi que leurs positions et vitesses initiales. Le cas N = 2 (problème à deux corps) a été résolu par Newton, mais dès N = 3 (problème à trois corps) apparaissent des solutions essentiellement impossibles à expliciter, car sensibles aux conditions initiales.

Il s'agit d'un problème mathématique fondamental pour l'astronomie classique, c’est-à-dire dans le cas où les effets de la relativité générale peuvent être négligés : vitesses des corps petites devant la vitesse de la lumière dans le vide, et champs de gravitation faibles, ce qui est essentiellement le cas dans le Système solaire.

Par extension cette appellation a été conservée dans le cas où l'on s'intéresse à un ensemble de particules liées par un potentiel quelconque ; le problème à N corps se pose également dans le cadre de la relativité générale, mais son étude y est encore plus difficile que dans le cadre newtonien.

Formulation mathématique

Le problème à N corps est modélisé par une équation différentielle. Étant donné les valeurs initiales des positions q j (0) et des vitesses des N particules (j = 1, 2, …, N) avec q j (0) ≠ q k (0) pour tout j et k distincts, il s'agit de trouver une solution du système du second ordre

G est la constante gravitationnelle, m1, m2, …, mN sont des constantes[note 1] représentant les masses des N particules, et q1, q2, …, qN sont leurs vecteurs position (à trois dimensions) dépendant du temps t.

Cette équation est simplement la seconde loi du mouvement de Newton ; le terme de gauche est le produit de la masse de la particule et de son accélération, tandis que le terme de droite est la somme des forces gravitationnelles qui s'exercent sur la particule. Ces forces sont proportionnelles aux masses concernées et varient proportionnellement à l'inverse du carré de la distance de ces masses. Puisqu'il faut tenir compte de la direction de ces forces (pour les mesurer par un produit scalaire avec un des vecteurs unitaires du repère spatial dans lequel on mesure aussi les accélérations subies par chaque particule), il faut insérer un q jq k au numérateur et le compenser par un cube au dénominateur (et non plus un simple carré).

La formule est valide si on suppose que l'espace est cartésien et orthogonal au temps (de même que sa norme pour mesurer les distances), ce qui n'est vrai qu'en mécanique classique (pour des vitesses pas trop importantes par rapport à la limite maximale de la vitesse de la lumière dans un vide absolu, et pour des masses pas trop importantes non plus). Mais elle n'est qu'une approximation locale en mécanique relativiste.

La formule suppose aussi que seule la gravitation est prise en compte (on suppose par exemple que les particules sont non chargées pour ne pas subir d'interaction électromagnétique et sont suffisamment éloignées pour que ni l'interaction forte ni l'interaction faible ne puissent avoir d'effet significatif), que l'espace entre les particules n'est constitué que du vide absolu n'interagissant donc pas directement lui-même sur les particules (il n'y a pas de masse noire ni d'énergie noire), que la totalité de la masse de chaque particule peut être concentrée en un seul point de l'espace, que l'espace et le temps sont continus (non quantifiés) et isotropes dans toutes les directions, et que la masse individuelle des particules se conserve avec leurs vitesses et accélérations relatives, de même que la quantité de mouvement totale des particules relative à l'observateur.

Problème à deux corps ou mouvement képlérien

Dans la mécanique de Newton, le problème à deux corps est entièrement résoluble analytiquement. Toutefois, dans les cadres de la relativité générale et dans celui de la relativité restreinte, le problème à deux corps n'admet pas de solution analytique exacte.

Problème à N corps

En dehors de quelques cas rarissimes où une solution exacte est connue, il faut en général recourir à des méthodes de résolution approchées. Deux approches sont utilisées :

Depuis les travaux de Henri Poincaré (en particulier le théorème qu'il a publié en 1890 dans l'article Sur le problème des trois corps et les équations de la dynamique[1]), on sait par ailleurs que dès le problème à trois corps apparaissent des solutions sensibles aux conditions initiales, et pour lesquelles une solution analytique efficiente, même approchée, est illusoire ; les méthodes statistiques de la théorie ergodique sont utilisées dans ce cas.

Configurations particulières

Remarque sur le problème à trois corps

Contrairement à une idée répandue, le problème à trois corps possède une solution analytique exacte, découverte par Karl Sundman en 1909[2]. Le problème est non résoluble avec une méthode algébrique, utilisée pour résoudre le problème à deux corps, car il manque des intégrales premières. La solution formulée par Sundman se présente sous la forme d'une série infinie qui converge très lentement, ce qui la rend en pratique inefficiente et in fine moins fiable que d’autres approches numériques, comme la méthode perturbative[3].

Entre 1918 et 1932, Jean Chazy confirme dans le cas le plus général la solution de Sundman et réalise une classification des sept sortes de mouvement[4].

Le mathématicien Qiudong Wang (en) généralise en 1991 le développement de Sundman en construisant une solution exacte du problème à N corps[3].

En 2000, le problème à trois corps a trouvé un renouveau par la solution périodique en huit, trouvée par Alain Chenciner et Richard Mongomery[5].

L'article sur les points de Lagrange en décrit une solution pour un cas particulier.

Singularités

Il a été montré en 1992 qu'il est possible à partir de cinq corps de construire un système tel qu'il existe une durée pour laquelle au moins deux corps peuvent se trouver arbitrairement loin de leur point de départ avant l'écoulement de cette durée ; autrement dit, il est théoriquement possible d'aller infiniment loin en un temps fini[6],[7]. Cependant, cette construction ne peut se réaliser en pratique, car à des vitesses proches de celle de la lumière, la relativité restreinte s'applique et non la mécanique newtonienne.

Dans la culture

Le problème à trois corps est évoqué dans le roman de science-fiction Le Problème à trois corps, et aussi dans la série Netflix Le problème à trois Corps, adaptée de ce dernier.

Notes et références

Notes

  1. Strictement positives.

Références

  1. Henri Poincaré, « Sur le problème des trois corps et les équations de la dynamique », Acta Mathematica, vol. 13,‎ , p. 1-270.
  2. Malte Henkel, Sur la solution de Sundman du problème des trois corps, Philosophia Scientiae 5 (2) (2001), 161-184. Texte complet disponible sur l'ArXiv : physics/0203001.
  3. a et b Malte Henkel, « Sur la solution de Sundman du probleme des trois corps », arXiv:physics/0203001,‎ (lire en ligne, consulté le ).
  4. [PDF] Sur le problème plan et symétrique des trois corps, Christos Caratzénis, 1931. [PDF]
  5. (en) Alain Chenciner, « Three body problem », Scholarpedia, vol. 2, no 10,‎ , p. 2111 (ISSN 1941-6016, DOI 10.4249/scholarpedia.2111, lire en ligne, consulté le ).
  6. (en) Zhihong Xia, « The Existence of Noncollision Singularities in Newtonian Systems », Annals of Mathematics, vol. 135, no 3,‎ (lire en ligne).
  7. (en) Donald Gene Saari et Zhihong Xia, « Off to infinity in finite time », Notices of the American Mathematical Society, vol. 42, no 5,‎ (lire en ligne).

Voir aussi

Articles connexes

Bibliographie

Initiation

Accessibles à partir du premier cycle universitaire.

  • (en) Florin Diacu et Philip Holmes, Celestial Encounters - The Origin of Chaos, Princeton University Press (1996), (ISBN 0-691-00545-1). L'origine du « chaos » moderne se trouve dans les travaux pionniers d'Henri Poincaré réalisés à la fin du XIXe siècle à propos d'un vieux problème de mécanique Newtonienne : le problème à N corps. Les auteurs du présent ouvrage, mathématiciens spécialistes du domaine, retracent élégamment l'histoire de ce problème et de ses développements de Poincaré à nos jours
  • (en) Forest R. Moulton, An introduction to celestial mechanics, Dover (1970) (ISBN 0-486-64687-4). Réédition de la seconde édition publiée originellement en 1914 ; un ouvrage d'introduction très clair
  • (en) Bill Casselman, The three body problem, Société Américaine de Mathématiques. Quelques solutions exactes du problème à trois corps, des plus anciennes (Euler, Lagrange, Hill) à la plus récente : la chorégraphie en forme de 8 d'Alain Chenciner et al. (2000)
  • (en) Sverre J. Aarseth, www.sverre.com. Le site personnel d'un professeur d'astronomie à l'université de Cambridge spécialiste de l'intégration numérique des équations différentielles du problème à N corps. On peut d'ailleurs télécharger ses codes de calcul sur le serveur ftp de l'université de Cambridge, ou encore à partir de cette page web
  • Richard Montgomery, « Le problème des trois corps rebondit », Pour la science, no 508,‎ , p. 26-35

Textes plus techniques

Les modernes
  • Malte Henkel, Sur la solution de Sundman du probleme des trois corps, Philosophia Scientiae 5 (2) (2001), 161-184. Texte complet disponible sur l'ArXiv : physics/0203001.
  • (en) Douglas C. Heggie, The Classical Gravitational N-Body Problem, Encyclopaedia of Mathematical Physics, Elsevier (A paraître : 2006). Texte complet disponible sur l'ArXiv : astro-ph/0503600.
  • (en) Vladimir Arnold, V.V. Kozlov & A.I. Neishtadt ; Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences, Springer-Verlag (2e édition-1993).
  • (en) Vladimir Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag (2e édition-1989) (ISBN 0-387-96890-3). Une synthèse de l'état de l'art en mécanique analytique (formalismes Lagrangien & Hamiltonien) avec l'accent mis sur l'interprétation géométrique de ces formalismes, par l'un des plus brillants mathématiciens du domaine. À partir du second cycle universitaire.
  • (en) Christian Marchal, The three-body problem, Elsevier , 1990; (ISBN 0-444-41813-X) : livre avec beaucoup de détails très précieux pour un élève de dynamique des systèmes gravitationnels. Évidemment, il ne peut intégrer les travaux de Chenciner, Simo, Saari.
  • (en) Carl L. Siegel et Jürgen Moser, Lectures on celestial mechanics, Classics in Mathematics, Springer-Verlag (1995). Quelques résultats mathématiques sur le problème à trois corps. Niveau second cycle universitaire minimum.
  • (en) June Barrow-Green, Poincaré and the Three Body Problem, AMS & LMS, coll. « History of Mathematics » (no 11), (lire en ligne)
  • (en) Donald G. Saari, Collisions, Rings, and Other Newtonian N-Body Problems, CBMS Regional Conference Series in Mathematics 104, American Mathematical Society (2005), (ISBN 0-8218-3250-6).
  • (en) Kenneth R. Meyer et Glen R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences 90, Springer-Verlag (1991), (ISBN 0-387-97637-X).
  • (en) Vladimir Arnold et André Avez, Ergodic Problems of Classical Mechanics, Advanced Book Classics, Pearson Addison Wesley () ASIN : 0201094061. Il existe aussi en français! Problèmes ergodiques de la mécanique classique ; ed Gauthier-villars , 1967.
Les classiques
  • Pierre-Simon Laplace, Traité de mécanique céleste, Éditions Jacques Gabay, 1990. Réédition d'un ouvrage classique de la fin du XIXe siècle, en 4 volumes. — Niveau second cycle universitaire.
  • François-Félix Tisserand, Traité de mécanique céleste, Éditions Jacques Gabay, 1990. Réédition d'un ouvrage classique de la fin du XIXe siècle, en 4 volumes. — Niveau second cycle universitaire.
  • Henri Poincaré, Leçons de mécanique céleste, 3 tomes, 1905-1910, réédité par Jacques Gabay, Paris, 2003. — Une somme de référence, par le grand mathématicien qui a tant contribué au sujet. Niveau second cycle universitaire.

Analyse numérique

  • (en) Sverre J. Aarseth, Gravitational N-body Simulations: Tools and Algorithms, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2003), (ISBN 0-521-43272-3).
  • (en) Piet Hut and Jun Makino, The Art of Computational Science [1]
  • (en) A. Marciniak, Numerical Solutions of the N-Body Problem, Mathematics and its Applications, Springer-Verlag (1989), (ISBN 90-277-2058-4).

Quelques travaux récents

  • (en) Alain Chenciner et Richard Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Annals of Mathematics (2) 152 (2000), no. 3, 881--901 (lire en ligne, sur ArXiv).
  • (en) Cristopher Moore et Michael Nauenberg, New Periodic Orbits for the n-Body Problem, 2005 (lire en ligne, sur ArXiv).
  • (en) C. Duval, G. Gibbons & P. Horvathy ; Celestial Mechanics, Conformal Structures, and Gravitational Waves, Physical Review D 43 (1991), 3907 (lire en ligne, sur ArXiv).

Liens externes

Read other articles:

Japanese dish; waffle rice cakeMoffles A moffle is a Japanese dish consisting of mochi rice cake cooked in a waffle iron, which creates a waffle.[1][2] A typical cooked moffle has a crunchy exterior with a thin interior layer of glutinous mochi.[3] When prepared as a dessert, it is typically served with various condiments.[1][2] It is also prepared as a snack food using ingredients such as ham and cheese or cod roe.[4] Sanyei Company claims to h...

 

جيمس كريغ واتسون معلومات شخصية الميلاد 28 يناير 1838(1838-01-28) الوفاة 22 نوفمبر 1880 (42 سنة)ماديسون، ويسكنسن  سبب الوفاة التهاب البريتون  مواطنة الولايات المتحدة كندا  عضو في الأكاديمية الوطنية للعلوم،  والأكاديمية الأمريكية للفنون والعلوم،  والجمعية الأمريكية للفلسف...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2020) حرب غوريو – خيتان التاريخ وسيط property غير متوفر. بداية 993  نهاية 1022  البلد مملكة لياو مملكة غوريو  تعديل مصدري - تعديل   حرب غوريو – خيتان هي عبارة عن ...

Characters by Fritz Leiber Fafhrd and the Gray Mouser seriesTwo Sought Adventure, the first published story collection exclusively featuring Fafhrd and the Gray Mouser, published by Gnome Press in 1958 Swords and Deviltry (1970) Swords Against Death (1970) Swords in the Mist (1968) Swords Against Wizardry (1968) The Swords of Lankhmar (1968) Swords and Ice Magic (1977) The Knight and Knave of Swords (1988) AuthorFritz LeiberCountryUnited StatesGenreSword and sorceryPublished1939–1988No. of ...

 

Census-designated place in Mississippi, United StatesScott, MississippiCensus-designated placeScott, MississippiShow map of MississippiScott, MississippiShow map of the United StatesCoordinates: 33°35′30″N 91°04′27″W / 33.59167°N 91.07417°W / 33.59167; -91.07417CountryUnited StatesStateMississippiCountyBolivarArea[1] • Total0.45 sq mi (1.15 km2) • Land0.45 sq mi (1.15 km2) • Water0.00...

 

Perusahaan Umum Lembaga Penyelenggara Pelayanan Navigasi Penerbangan IndonesiaNama dagangAirNav IndonesiaJenisPerusahaan umumIndustriPemanduan lalu lintas udaraDidirikan13 September 2012; 11 tahun lalu (2012-09-13)KantorpusatTangerang, IndonesiaWilayah operasiIndonesiaTokohkunciMohamad Pramintohadi Sukarno[1](Direktur Utama)Novie Riyanto[2](Ketua Dewan Pengawas)JasaPelayanan lalu lintas penerbanganPelayanan telekomunikasi penerbanganPelayanan informasi aeronautikaPelayana...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2021) معمدانية حرية الإرادة هي طائفة ومجموعة من الناس الذين يؤمنون بالنعمة الحرة والخلاص الحر والإرادة الحرة. يمكن إرجاع الحركة إلى القرن السابع عشر مع تطور المعم

 

ينظم قانون الغابات الأنشطة التي تجري في أراضي غابات معينة، خصوصًا في ما يتعلق بإدارة الغابات والإشراف عليها وقطع الأشجار بهدف الحصول على الأخشاب. قد تنظم هذه القوانين أيضًا استملاك أراضي الغابات وعمليات الحرق المسموح بها. تعتمد قوانين إدارة الغابات بشكل عام على سياسات ال...

 

Private school in Istanbul, TurkeyPhanar Greek Orthodox College(Great School of the Nation)Μεγάλη του Γένους ΣχολήLocationIstanbulTurkeyCoordinates41°01′44″N 28°56′56″E / 41.029°N 28.949°E / 41.029; 28.949InformationFormer name Ecumenical Patriarchal School (4th–6th centuries) Great Step Mega Vima (6th-8th centuries) Patriarchal Academy (9th–13th centuries) Patriarchal School (14th century – 1804) Patriarchal School of Ksirokrini (...

Radio stationSports Radio DetroitBroadcast areaWorldwideBrandingSRD/Sports Radio DetroitProgrammingFormatSports TalkOwnershipOwnerFormerly SRD Productions, LLCHistoryFirst air dateSeptember 25, 2012Former call signsLetsGoWingsMedia.com (2011)LetsGoWingsRadio.com (2012)LinksWebcastListen LiveWebsiteSportsRadioDetroit.com Sports Radio Detroit (SRD) was a Detroit-based internet sports broadcasting and news network covering Detroit's professional sports teams Detroit Lions, Detroit Tigers, Detroi...

 

Thaipusam தைப்பூசம்Nama lainதமிழர் திருவிழாDirayakan olehOrang Tamil (khususnya Tamil Sri Lanka, India-Malaysia, India-Singapura, India-Indonesia, Indo-Karibia, Indo-Fiji dan Indo-Mauritius)JenisReligiusMaknaMerayakan momen ketika Parvati memberikan Vel kepada MuruganTanggalBerdasarkan kalender Tamil Thaipusam atau Thaipoosam (Tamil: தைப்பூசம், Taippūcam ?) adalah festival yang dirayakan oleh orang-orang Tamil pada bul...

 

キャラクターの倒し方など、攻略要素は掲載の対象になりません。個別記事のあるキャラクターの詳細は個別記事の方に記述してください。 マリオシリーズ > マリオシリーズのキャラクター一覧 > 3Dアクションマリオシリーズのキャラクター一覧 『3Dアクションマリオシリーズのキャラクター一覧』(スリーディーアクションマリオシリーズのキャラクター...

Bilal Mohammed Datos personalesNombre completo Bilal Mohammed RajabNacimiento Sudán2 de julio de 1986 (37 años)País  SudánNacionalidad(es) CataríAltura 1,83 m (6′ 0″)Carrera deportivaDeporte FútbolClub profesionalDebut deportivo 2003(Al-Gharafa SC)Posición DefensaGoles en clubes 9Retirada deportiva 2019(Umm-Salal SC)Selección nacionalSelección QAT CatarDebut 2003Dorsal(es) 3 - 6 - 30Part. (goles) 108 (2)        ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Frida Lidwina – berita · surat kabar · buku · cendekiawan · JSTOR Frida LidwinaLahirFrida Lidwina Tanadinata WidjajaPekerjaanpembawa acara Frida Lidwina Tanadinata Widjaja (lahir 24 Juni 1974) adalah pre...

 

District in Kohgiluyeh and Boyer-Ahmad province, Iran Not to be confused with Sarfaryab Rural District.For the city, see Sarfaryab. District in Kohgiluyeh and Boyer-Ahmad, IranSarfaryab District Persian: بخش سرفاریابDistrictSarfaryab DistrictCoordinates: 30°52′37″N 50°50′49″E / 30.87694°N 50.84694°E / 30.87694; 50.84694[1]Country IranProvinceKohgiluyeh and Boyer-AhmadCountyCharamCapitalSarfaryabPopulation (2016)[2] ...

Pemilihan Umum Bupati Sumbawa Barat 2020201520249 Desember 2020[1]Kandidat   Calon W. Musyafirin Kotak Kosong Partai PDI-P Pendamping Fud Syaifuddin Peta persebaran suara Peta Nusa Tenggara Barat yang menyoroti Kabupaten Sumbawa Barat Bupati dan Wakil Bupati petahanaW. Musyafirin dan Fud Syaifuddin Partai Demokrasi Indonesia Perjuangan Bupati dan Wakil Bupati terpilih belum diketahui Sunting kotak info • L • BBantuan penggunaan templat ini Pemilihan umum Kabupaten S...

 

Former Ontario provincial highway Highway 103     Highway 103      1944–1958 route      Highway 12 concurrency (1965-1973)Route informationMaintained by the Ministry of Transportation of OntarioLength58.3 km[1] (36.2 mi)ExistedJuly 11, 1944[2]–May 15, 1976[3]Major junctionsSouth end Highway 69 in Foot's BayNorth end Highway 12 in Waubaus...

 

Italian fencer For his grandson and Olympic fencer, see Marcello Bertinetti (fencer born 1952). Marcello BertinettiPersonal informationBorn(1885-04-26)26 April 1885Vercelli, ItalyDied31 July 1967(1967-07-31) (aged 82)Vercelli, ItalySportSportFencing Medal record Representing  Italy (ITA) Olympic Games 1908 London Sabre, team 1924 Paris Sabre, team 1924 Paris Épée, team 1928 Amsterdam Épée, team World Fencing Championships 1929 Naples Épée, individual Marcello Bertinetti (...

Mismatch loss in transmission line theory is the amount of power expressed in decibels that will not be available on the output due to impedance mismatches and signal reflections. A transmission line that is properly terminated, that is, terminated with the same impedance as that of the characteristic impedance of the transmission line, will have no reflections and therefore no mismatch loss. Mismatch loss represents the amount of power wasted in the system[dubious – discuss ...

 

Rain Peerandi Datos personalesApodo(s) Rain PeerandiNacimiento Tartu27 de enero de 1984 (39 años)País EstoniaNacionalidad(es) EstoniaResidencia EstoniaAltura 1,89Peso 82 kilosCarreraDeporte BaloncestoFunción Árbitro de baloncestoCategoría FIBAComité Estonio[editar datos en Wikidata] Rain Peerandi (Tartu, Estonia, 27 de enero de 1984) es un árbitro de baloncesto estonio, que dirige partidos en la Alexela Korvpalli Meistriliiga, Euroliga y Eurocup.[1]​ Trayectoria Em...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!