توزیعپذیری یا پخشپذیری خاصیتی در ریاضیات است که برای عملی دوتایی تعریف میشود.
تعریف
فرض کنیم و اعمالی دوتایی در مجموعه ناتهی A باشند. عمل را نسبت به توزیعپذیر خوانیم هرگاه به ازای هر a و b و c از A، دو برابری زیر برقرار باشند:
برابری نخست را توزیعپذیری از چپ و برابری دوم را توزیعپذیری از راست مینامیم.
مثالها
(a×(b+c) = (a×b)+(a×c
و
(a×(b-c) = (a×b)-(a×c
- ضرب دکارتی نسبت به اجتماع و اشتراک توزیعپذیر است. اگر A و B و C را سه مجموعه بگیریم، آنگاه
- حاصلضرب دکارتی نسبت به عمل متممگیری توزیعپذیر است.
- در اعداد اصلی عمل ضرب نسبت به عمل جمع توزیعپذیر است.
- در منطق، و (∧) نسبت به یا (∨) توزیعپذیر است و برعکس. اگر فرض کنیم P و Q و R گزاره هستند، آنگاه
جستارهای وابسته
منابع
|
---|
عمومی | | |
---|
منطقهای کلاسیک | |
---|
اصول | |
---|
قواعد |
|
---|
افراد | |
---|
اثرها | |
---|