Tetrapoda

Tetrápodos
Rango temporal: Devónico Superior-Reciente
Taxonomía
Superreino: Eukaryota
Reino: Animalia
Subreino: Eumetazoa
Superfilo: Deuterostomia
Filo: Chordata
Subfilo: Vertebrata
Infrafilo: Gnathostomata
Superclase: Tetrapoda
Clados

Los tetrápodos (Tetrapoda), del griego tetra- 'cuatro' y ‒́podo 'pies',[1]​ son un clado de animales vertebrados con cuatro extremidades, ambulatorias o manipulatorias. Los anfibios, mamíferos y los saurópsidos (reptiles y aves) son tetrápodos, (incluidos los anfibios ápodos y serpientes, cuyos antepasados tenían cuatro patas). El término es especialmente útil para describir a los miembros más primitivos del grupo, que radiaron desde los sarcopterigios (peces de «aletas lobulares») a los primeros anfibios del período Devónico.

Definición y filogenia de los tetrápodos

Existe un intenso debate en lo que respecta a la definición de “tetrápodo”. Algunos autores consideran tetrápodos a todos los vertebrados terrestres poseedores de patas y a sus ancestros pisciformes con aletas directamente relacionados. Este clado ha sido llamado Stegocephalia. No obstante la mayoría de los autores, consideran el término tetrápodo de un modo mucho más restrictivo, e incluyen en este grupo solo a los anfibios modernos y sus antepasados más cercanos, y a los amniotas y a sus antecesores más inmediatos.[2]

En el siguiente cladograma, basado en Tree of Life,[3]​ pueden hallarse los dos conceptos de tetrápodo, el “amplio” y el “restringido”. En general el concepto restringido es el más preferentemente usado:

Stegocephalia (Tetrapoda sensu lato)

Elginerpeton

Metaxygnathus

Ventastega

Acanthostega

Ichthyostega

Hynerpeton

Tulerpeton

Crassigyrinus

Baphetidae

Colosteidae

Whatcheeria

Gephyrostegidae

Embolomeri

Seymouriamorpha

Tetrapoda sensu stricto
Amphibia

Aistopoda

Nectridea

Microsauria

Lysorophia

Temnospondyli

Lissamphibia (anfibios modernos)

Reptiliomorpha

Solenodonsaurus

Diadectomorpha

Amniota (reptiles, aves, mamíferos)

Filogenia de los grupos actuales

Los análisis moleculares dan la siguiente filogenia para los grupos de tetrápodos actuales (incluido las secuencias proteicas obtenidas de Tyrannosaurus rex y Brachylophosaurus canadensis):[4][5][6][7]

Tetrapoda
Amphibia

Gymnophiona

Batrachia

Caudata

Anura

Amniota

Mammalia

Sauropsida
Lepidosauria

Sphenodontia

Squamata

Archelosauria

Testudines

Archosauria

Crocodilia

Dinosauria

Aves

Tyrannosauroidea (Tyrannosaurus)

Ornithischia (Brachylophosaurus)

El grupo Tetrapoda fue utilizado históricamente para designar a aquellos vertebrados con cuatro extremidades y dígitos en las patas, esto incluyendo a vertebrados sin patas que desciendan de los vertebrados mencionados anteriormente. Esta definición apomórfica suele respaldarse con una definición cladística equivalente con tal de evitar grupos no relacionados producto de la evolución convergente.[8][9][10]

Una parte de los investigadores de los tetrápodos, liderados por el paleontólogo francés Michel Laurin, prefieren restringir la definición de tetrápodo al grupo corona, es decir, una definición basado en nodos que agrupa al grupo menos inclusivo que incluye al último ancestro común entre Lissamphibia y Amniota; excluyendo a varios grupos tradicionalmente clasificados como tetrápodos.[11][12]

Laurin optó por esa redefinición en base de la creencia de que el término tiene más relevancia para los neontólogos (zoólogos especializados en animales vivos) que para los paleontólogos (que utilizan principalmente la definición basada en la apomorfía).restableció el término histórico extinto Stegocephali para reemplazar la definición basada en la apomorfía de tetrápodo utilizada por muchos autores.[13]​ Gaffney (1979) proporcionó el nombre Neotetrapoda al grupo corona de tetrápodos, aunque pocos autores posteriores siguieron esta propuesta.[14]​Neotetrapoda (la bifurcación entre Batrachomorpha y Reptiliomorpha) aparece hace 349 millones de años.[15]

El siguiente árbol filogenético muestra la parafilia de los laberintodontes, estos estando compuestos por los órdenes Ichthyostegalia, Temnospondyli y Reptiliomorpha; los tres grupos antes mencionados son parafiléticos. La subclase Lepospondyli es polifilética,[16]​ sus miembros se reparten en Adelospondyli (inclu. Aistopoda)[17]​, Microsauria (inclu. Nectridea y Lysorophia), y Gymnophiona.[18]​ El clado que contiene a los tres grupos de lepospóndilos se le denomina informalmente Panlepospondyli.

Elpistostegalia

Panderichthys

Qikiqtania

Tiktaalik

Elpistostega

Umzantsia

Parmastega

Stegocephalia

Ventastega

Acanthostega

Elginerpetontidae

Elginerpeton

Obruchevichthys

Ichthyostega

Ymeria

Aytonerpeton

Perittodus

Hynerpeton

Ossinodus

Whatcheeriidae

Tantallognathus

Diploradus

Crassigyrinus

Sigournea

Koilops

Tulerpeton

Colosteidae

Embolomeri

Adelospondyli

Acherontiscus

Aytonerpeton

Aistopoda

Adelogyrinidae

Eucritta

Baphetoidea

Spathicephalus

Baphetidae

Tetrapoda s.s
Pan-Lissamphibia

Caerorhachis

Amphibia

Balanerpeton

Dendrerpeton

Rhachitomi

Eryopoidea

Edopoidea

Dissorophoidea

Limnarchia

Dvinosauria

Stereospondylomorpha

Pan-Amniota

Eldeceeon

Silvanerpeton

Gephyrostegus

Bruktererpeton

Batrachosauria

Solenodonsaurus

Casineria

Seymouriamorpha

Chroniosuchia

Reptiliodermata

Westlothiana

Microsauria

Amniota

Evolución

Tetrápodos del Devónico

Los primeros tetrápodos debieron de vivir a principios del Devónico Medio, como lo prueban las huellas halladas recientemente en sedimentos marinos de Polonia.[19]​ Los individuos fósiles más antiguos de vertebrados terrestres conocidos, Acanthostega, datan del Devónico Superior del este de Groenlandia.[3][20]

Tradicionalmente se asume que los primeros tetrápodos se desarrollaron en hábitats de agua dulce bajos y pantanosos hacia el final del Devónico, hace poco más de 360 millones de años. En el Devónico tardío, las plantas terrestres habían estabilizado los hábitats de agua dulce, permitiendo la existencia de los primeros ecosistemas dulceacuícolas, con cadenas alimentarias cada vez más complejas, lo que produjo nuevas oportunidades evolutivas. Los hábitats de agua dulce no fueron los únicos lugares llenos de líquido rico en materia orgánica y bordeados con vegetación densa.

En este tiempo también existieron hábitats cenagosos como pantanales bajos, lagunas costeras y deltas de ríos salobres, y hay muchas evidencias que sugiere que esta fue la clase de ambientes en la cual los tetrápodos se desarrollaron. Se han encontrado fósiles tempranos de este grupo en sedimentos marinos, y dado que los fósiles de tetrápodos primitivos en general se encuentran extendidos por el mundo, la única manera que habrían podido dispersarse habría sido el seguir las líneas costeras, lo cual resulta imposible si hubieran vivido exclusivamente en ambientes de agua dulce.

La especialización evolutiva de los vertebrados del Devónico superior llevó a peces sarcopterigios como Panderichthys a tener descendientes como Eusthenopteron que podía respirar aire y vivía en pantanos superficiales; a Tiktaalik cuyas aletas similares a patas podían llevarlo ocasionalmente a tierra firme, y precedió a los primeros anfibios tetrápodos como Acanthostega, cuyos pies tenían ocho dedos, e Ichthyostega, que desarrolló miembros fuertes que le permitieron deambular por tierra. Por su parte, los peces de aletas lobuladas evolucionaron hacia formas actuales como el fósil viviente celacanto.

Además está el problema de los desechos de nitrógeno. El antepasado común de todos los actuales gnatóstomos (vertebrados con mandíbulas) vivió en agua dulce y emigró posteriormente de nuevo al mar. Para resistir la salinidad mucho más alta del agua oceánica, desarrolló la capacidad de almacenar el amoníaco —residuo tóxico del nitrógeno— transformándolo previamente en urea inofensiva, para luego elevar la salinidad de la sangre hasta igualarla con la del agua de mar sin incurrir en un envenenamiento del propio organismo.

Los peces de aletas con radios (actinopterigios) regresaron más adelante al agua dulce, y perdieron la capacidad —ahora inútil— de producir urea. Puesto que su sangre contenía más sal que el agua dulce, podían simplemente librarse del amoníaco a través de sus agallas. Cuando finalmente volvieron al mar otra vez, en vez de recuperar su viejo recurso de fijar amoníaco en urea, desarrollaron glándulas para excretar la sal sobrante. Los peces pulmonados practican hoy en día la misma estrategia: cuando viven en un medio líquido producen amoníaco y no urea, pero en la estación seca, cuando tienen que protegerse en madrigueras en el fango, activan el método de producción de urea. Como los peces cartilaginosos, el celacanto puede almacenar la urea en su sangre, al igual que los únicos anfibios que se sabe que pueden vivir por largos períodos en agua salada (el sapo Bufo marinus y la Rana cancrivora).

Los tetrápodos primitivos evolucionaron desde los peces de aletas lobuladas (sarcopterigios), con un cerebro bilobulado dentro de un cráneo aplanado, con una boca ancha y un hocico corto, con ojos ubicados en la parte superior de la cabeza (lo que demuestra que fueron habitantes del fondo). Sus ancestros inmediatos habían desarrollado ya modificaciones de aletas con bases carnosas (el celacanto actual (Latimeria) es un pez marino de aletas lobulado relacionado, pero que obviamente no posee estas adaptaciones al fondo acuático).

Eusthenopteron
Panderichthys
Tiktaalik
Elginerpeton
Acanthostega
Ichthyostega
Hynerpeton
Tulerpeton
Crassigyrinus
Pederpes
Lydekkerina
Benthosuchus
Seymouria
Diadectes

Incluso más estrechamente relacionado está Panderichthys, que incluso tenía coanas. Este pez utilizaba sus aletas como paletas en el fondo acuático plagado de plantas y detritos orgánicos. Las aletas también se habrían podido utilizar para aferrar al animal a las plantas del fondo mientras emboscaba a sus presas. La característica universal de los tetrápodos de poseer miembros delanteros que se doblan hacia atrás en el codo y miembros traseros que se doblan hacia delante en la rodilla se puede remontar posiblemente a los tetrápodos tempranos que vivieron en aguas superficiales.

Está claro ahora que el antepasado común de los peces óseos tenía pulmones primitivos (que derivaría más adelante en la vejiga natatoria de la mayoría de los peces de aletas con radios). Esto sugiere que se desarrolló en aguas superficiales tibias, la clase de hábitat en el que vivieron los sarcopterigios, ambiente en el cual ese pulmón simple adquiría utilidad cuando el nivel del oxígeno en el agua descendía demasiado. Los peces pulmonados son ahora considerados como los parientes vivos más cercanos de los tetrápodos, incluso más que el celacanto.

Las aletas carnosas apoyadas en huesos parecen haber sido un rasgo original de los peces óseos primitivos (Osteichthyes). Los antepasados sarcopterigios de los tetrápodos las desarrollaron aún más, mientras que los antepasados de los peces de aletas con radios (Actinopterygii) evolucionaron sus miembros en el esquema opuesto; el grupo actual más primitivo de estos, miembro de la familia Polypteridae, todavía tiene aletas frontales carnosas.

Se han descrito nueve géneros de tetrápodos del Devónico, varios conocidos principalmente a partir de material de la mandíbula inferior. Todos eran oriundos del supercontinente de Laurasia, que abarcó Europa, Norteamérica y Groenlandia. La única excepción es un solo género encontrado en Gondwana, Metaxygnathus, hallado en Australia. El primer tetrápodo Devónico identificado de Asia fue reconocido a partir de un maxilar fósil descrito en 2002. El tetrápodo chino Sinostega fue descubierto entre plantas tropicales fosilizadas y restos de peces sarcopterigios en los sedimentos de la piedra arenisca roja de la región autónoma de Ningxia Hui en China del noroeste. Este hallazgo extendió substancialmente el rango geográfico de estos animales y planteó nuevas preguntas sobre la distribución mundial y la gran diversidad taxonómica que alcanzaron dentro de un tiempo relativamente corto.

Los tetrápodos más tempranos no fueron terrestres. Las formas terrestres primigenias confirmadas se conocen a partir de los depósitos del Carbonífero inferior, unos 20 millones de años más tarde. No obstante, las variedades más primitivas pudieron haber pasado períodos muy breves fuera del agua, probablemente utilizando sus toscas extremidades para abrirse camino a través del fango.

¿Por qué abandonaron el agua?

Todavía se discute por qué la dinámica evolutiva los impulsó a tierra. Una razón propuesta es que en cierto punto del desarrollo evolutivo los individuos juveniles que apenas habían terminado su metamorfosis estaban suficientemente dotados como para aprovechar las ventajas del ambiente terrestre. Adaptados ya al aire y, como forma de protección, a moverse entre la vegetación en aguas bajas cercanas a la costa (de la misma manera que los peces y anfibios modernos pasan la primera parte de su vida), tenía ante sí dos nichos muy diferentes que se traslapaban mutuamente con ellos en la difusa frontera entre ambos medios. Uno de estos ambientes, el acuático, estaba superpoblado y presentaba toda clase de peligros, mientras que el terrestre era mucho más seguro, estaba casi despoblado y era abundante en recursos, por los cuales existía casi nula competencia. El nicho terrestre era también un lugar mucho más desafiante y diverso para los animales acuáticos primigenios, pero debido a la forma en que trabajan la evolución y la presión de selección, aquellos ejemplares juveniles que cruzaran la barrera ambiental serían recompensados. Todo lo que necesitaban era ganar el primer paso hacia tierra, y la evolución se encargaría del resto. Gracias a todas sus preadaptaciones y a estar en el lugar correcto en el momento adecuado, toda la potencialidad oculta de la nueva interrelación entre ambiente y forma viviente emergería eventualmente.

En aquel tiempo había muchos invertebrados que se arrastraban por tierra y agua, principalmente en el suelo húmedo, algo más que suficiente para ofrecer a los nuevos moradores oportunidades de alimentarse. Algunos de estos invertebrados eran incluso lo bastante grandes como para alimentarse de tetrápodos pequeños, convirtiéndose en un potencial peligro, pero inclusive así el medio terrestre era un lugar mucho más seguro y ofrecía más que las aguas cenagosas. Los adultos serían demasiado grandes y pesados como para tener éxito, pero los juveniles, más ligeros y ágiles, pudieron adaptarse más rápidamente y conseguir el éxito: algunos miembros de la moderna subfamilia Oxudercinae son capaces de atrapar insectos en pleno vuelo mientras están en tierra, por lo que no se debe subestimar la agilidad de los tetrápodos juveniles tempranos.

Tetrápodos del Carbonífero

Hasta los años 1990 existía una brecha de 30 millones de años en el registro fósil entre los tetrápodos del Devónico tardío y la reaparición de formas anfibias en el Carbonífero medio. Esta interrupción es conocida como la Brecha de Romer en honor al paleontólogo Alfred Romer que advirtió su existencia.

Durante esta brecha, los tetrápodos desarrollaron miembros provistos de dedos y otras notorias adaptaciones a la vida terrestre en los oídos, el cráneo y la columna vertebral. El número de dedos en las manos y pies se estandarizó en cinco, debido a la mayoritaria extinción de linajes con polidactilia positiva (más de cinco dedos), originándose el quiridio.

La transición desde los peces acuáticos de aletas lobuladas a los anfibios avanzados constituye uno de los momentos más significativos de la evolución de los vertebrados. El cambio desde la vida en un ambiente gravitacionalmente neutro y acuoso hacia otro completamente diferente requiere de adaptaciones extraordinarias en el plan corporal, tanto desde el punto de vista morfológico como funcional. Eryops es un ejemplo de un animal que realizó dichas adaptaciones. Retuvo y refinó la mayoría de los rasgos propios de sus ancestros acuáticos. Sus fuertes extremidades soportaban y permitían transportar su cuerpo fuera del agua; un espinazo más grueso prevenía el colapso del cuerpo bajo su propio peso. La modificación de huesos mandibulares vestigiales propios de los peces llevó al desarrollo de pabellones auriculares rudimentarios, lo que le permitió oír sonidos transportados por el aire.

Para la edad Viseana del Carbonífero medio, los tetrápodos primitivos habían originado al menos tres ramas principales. Varios anfibios basales son representativos del grupo laberintodontes, clado compuesto de los temnospóndilos (como Eryops) y los igualmente de primitivos antracosaurios, parientes y ancestros de los amniotas. Dependiendo de la autoridad taxonómica seguida, los anfibios modernos (anuros, caudados y gimnofiones) derivan de uno o de otro de esos subgrupos (o posiblemente de ambos, a pesar de que esta es una visión minoritaria).

Los primeros amniotas que se conocen datan de la primera parte del Carbonífero superior, y entre ellos —ya en el Triásico— se encuentran los primeros mamíferos, tortugas y cocodrilos (los lagartos y las aves aparecieron en el Jurásico, y las serpientes en el Cretácico). Como miembros vivientes de los tetrápodos, estos animales representan los puntos filogenéticos extremos de esos dos linajes divergentes. Un tercer grupo, más primitivo, anclado en el Carbonífero, los bafétidos, no dejó supervivientes actuales. Finalmente, los lepospóndilos son un grupo Paleozoico extinto difícil de relacionar taxonómicamente.

Tetrápodos del Pérmico

En el período Pérmico el término “tetrápodo” comienza a perder su utilidad, pues los distintos linajes del grupo empiezan a desarrollarse en forma notablemente independiente. Además de la aparición de clados como Temnospondyli y Anthracosauria entre los primeros protoanfibios laberintodontes, hicieron aparición dos clados importantes y divergentes de amniotas: los saurópsidos (Sauropsida) y los sinápsidos (Synapsida), siendo estos últimos los animales más exitosos e importantes de todo el Pérmico. Cada uno de estos linajes, sin embargo, continúa dentro de Tetrapoda, de manera que Homo sapiens podría ser visto como una forma extraordinariamente especializada de un pez de aletas lobuladas.

Formas vivientes de tetrápodos

Existen tres linajes principales de tetrápodos que sobreviven hoy en día:

Amphibia
anuros, caudados y gimnofiones
Sauropsida
Reptiles modernos y aves.
Synapsida
Mamíferos actuales.

Nótese que las serpientes, lagartos y anfibios sin patas son igualmente considerados tetrápodos debido a que descienden de formas que poseyeron cuatro extremidades. Por el mismo argumento se incluyen en este grupo a las variedades acuáticas de mamíferos, como la ballena, el manatí, etc. La mayoría de los tetrápodos de la actualidad son terrestres, por lo menos en sus formas adultas, pero algunas especies como el ajolote (Ambyostoma mexicanum) son completamente acuáticas. Los ictiosaurios y las modernas ballenas y delfines están entre los pocos tetrápodos que retornaron al medio acuoso.

Taxonomía

El siguiente es un esquema taxonómico parcial:

Referencias

  1. Real Academia Española. «tetrápodo». Diccionario de la lengua española (23.ª edición). 
  2. Definition of the taxon Tetrapoda - Tree of Life
  3. a b Vertebrados terrestres - Tree of Life
  4. Iwabe, N.; Hara, Y.; Kumazawa, Y.; Shibamoto, K.; Saito, Y.; Miyata, T.; Katoh, K. (29 de diciembre de 2004). «Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins». Molecular Biology and Evolution 22 (4): 810-813. PMID 15625185. doi:10.1093/molbev/msi075. 
  5. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria) Y Chiari, BMC.
  6. María H. Schweitzer, Wenxia Zheng, Chris L Órgano, John M Asara (2009). Biomolecular Characterization and Protein Sequences of the Campanian Hadrosaur B. canadensis. Researchgate.
  7. Elena R. Schroeter, Timothy Cleland, Caroline J. Dehart, María H. Schweitzer (2017). Expansion for the Brachylophosaurus canadensis Collagen I Sequence and Additional Evidence of the Preservation of Cretaceous Protein. Researchgate.
  8. Anderson, Jason S. (1 de septiembre de 2002). «Use of Well-Known Names in Phylogenetic Nomenclature: A Reply to Laurin». Systematic Biology 51 (5): 822-827. ISSN 1076-836X. PMID 12396594. doi:10.1080/10635150290102447. 
  9. Ruta, M.; Coates, M.I.; Quicke, D.L.J. (2003). «Early tetrapod relationships revisited». Biological Reviews 78 (2): 251-345. PMID 12803423. S2CID 31298396. doi:10.1017/S1464793102006103. 
  10. Ruta, M.; Coates, M.I.; Quicke, D.L.J. (2003). «Early tetrapod relationships revisited». Biological Reviews 78 (2): 251-345. PMID 12803423. S2CID 31298396. doi:10.1017/S1464793102006103. 
  11. Laurin, Michel (1 de marzo de 2002). «Tetrapod Phylogeny, Amphibian Origins, and the Definition of the Name Tetrapoda». Systematic Biology 51 (2): 364-369. ISSN 1076-836X. PMID 12028737. doi:10.1080/10635150252899815. 
  12. Queiroz, Kevin de; Cantino, Philip D.; Gauthier, Jacques A. (2020). «Stegocephali E. D. Cope 1868 [M. Laurin], converted clade name». En De Queiroz, Kevin; Cantino, Philip; Gauthier, Jacques, eds. Phylonyms: A Companion to the PhyloCode (1st edición). Boca Raton: CRC Press. ISBN 9780429446276. S2CID 242704712. doi:10.1201/9780429446276. 
  13. Laurin, Michel; Girondot, Marc; de Ricqlès, Armand (2000). «Early tetrapod evolution». Trends in Ecology & Evolution 15 (3): 118-123. ISSN 0169-5347. PMID 10675932. doi:10.1016/S0169-5347(99)01780-2. Archivado desde el original el 22 de julio de 2012. Consultado el 8 de junio de 2015. 
  14. Laurin, Michel; Anderson, Jason S. (1 de febrero de 2004). «Meaning of the Name Tetrapoda in the Scientific Literature: An Exchange». En Simon, Chris, ed. Systematic Biology (en inglés) 53 (1): 68-80. ISSN 1076-836X. PMID 14965901. S2CID 15922260. doi:10.1080/10635150490264716. 
  15. Delsuc, Frédéric; Philippe, Hervé; Tsagkogeorga, Georgia; Simion, Paul; Tilak, Marie-Ka; Turon, Xavier; López-Legentil, Susanna; Piette, Jacques et al. (31 de marzo de 2018), A phylogenomic framework and timescale for comparative studies of tunicates (en inglés), doi:10.1101/236448, hdl:10261/163664, consultado el 10 de junio de 2024  .
  16. Jason D. Pardo, Matt Szostakiwskyj, Per E. Ahlberg & Jason S. Anderson (2017) Hidden morphological diversity among early tetrapods. Nature (advance online publication) doi:10.1038/nature22966>
  17. Marsicano, Claudia A.; Pardo, Jason D.; Smith, Roger M. H.; Mancuso, Adriana C.; Gaetano, Leandro C.; Mocke, Helke (2024-07). «Giant stem tetrapod was apex predator in Gondwanan late Palaeozoic ice age». Nature (en inglés) 631 (8021): 577-582. ISSN 1476-4687. doi:10.1038/s41586-024-07572-0. Consultado el 8 de agosto de 2024. 
  18. Carroll, R. L. (2001). «The origin and early radiation of terrestrial vertebrates». Journal of Paleontology 75 (6): 1202-1213. S2CID 59359868. doi:10.1666/0022-3360(2001)075<1202:toaero>2.0.co;2. 
  19. Niedźwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E. (2010). Tetrapod trackways from the early Middle Devonian period of Poland. Nature, 463: 43-48 doi:10.1038/nature08623
  20. Clack, J. A. 1994. Earliest known tetrapod braincase and the evolution of the stapes and fenestra ovalis. Nature, 369: 392-394.(Abstract)

Bibliografía

Enlaces externos

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2016) كأس النيجر معلومات عامة الرياضة كرة القدم  البلد النيجر  المنظم اتحاد النيجر لكرة القدم  التسلسل ال

 

Danny Vukovic Danny Vukovic bermain untuk Central Coast Mariners melawan Sydney FC, 2008Informasi pribadiTanggal lahir 27 Maret 1985 (umur 38)Tempat lahir AustraliaPosisi bermain Penjaga gawangKarier senior*Tahun Tim Tampil (Gol)2014 Vegalta Sendai * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Danny Vukovic (lahir 27 Maret 1985) adalah pemain sepak bola asal Australia. Karier Danny Vukovic pernah bermain untuk Vegalta Sendai. Pranala luar (Jepang) Profil dan stati...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) دونكان جونسون معلومات شخصية تاريخ الميلاد 17 أغسطس 1938  تاريخ الوفاة 11 أكتوبر 2018 (80 سنة)   مواطنة كندا  الحياة العملية المهنة إذاعي،  ودي جيه  تعديل م

Ned Zelić Informações pessoais Nome completo Nedijeljko Ned Zelić Data de nascimento 4 de julho de 1971 (52 anos) Local de nascimento Austrália Informações profissionais Posição Volante Clubes profissionais Anos Clubes Jogos e gol(o)s Sydney Croatia Seleção nacional 1991–1997  Austrália 34 (3) Nedijeljko Ned Zelić (Sydney, 4 de julho de 1971) é um ex-futebolista profissional australiano, atuava como volante. Carreira Ned Zelić representou a Seleção Australian...

 

Former annual concert tour (2008–2013) The topic of this article may not meet Wikipedia's notability guideline for events. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Scream the Prayer Tour – news · newspapers ...

 

10324 ВладіміровВідкриттяВідкривач Карачкіна Людмила ГеоргіївнаМісце відкриття КрАОДата відкриття 14 листопада 1990ПозначенняТимчасові позначення 1990 VB14 1993 OY8Категорія малої планети Астероїд головного поясуОрбітальні характеристики[1] Епоха 23 травня 2014 (2 456 800,5 JD)Ве...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2019) كي إن إم إي آر 3883(KNM ER 3883) هو رقم الفهرس لجمجمة متحجّرة (الجمجمة شبه كاملة) لنوع الإنسان المنتصب. اكتشف ريتشارد ليكي الحفرية في عام 1976 في كوبي فورا، شرق بحيرة تور...

 

ЖигалкаВитік у селі Ріжки• координати 49°31′49″ пн. ш. 30°18′00″ сх. д. / 49.53028° пн. ш. 30.30000° сх. д. / 49.53028; 30.30000Гирло Черні• координати 49°35′22″ пн. ш. 30°18′34″ сх. д. / 49.58944° пн. ш. 30.30944° сх. д. / 49.58944; 30.30944Басейн Дніпра

 

Kekaisaran yang terbagi pada 271 Masehi. Krisis Abad Ketiga, yang juga dikenal sebagai Anarki Militer atau Krisis Kekaisaran, (235–284 Masehi) adalah sebuah periode dimana Kekaisaran Romawi hampir runtuh di bawah terpaan invasi, perang saudara, wabah penyakit dan masalah ekonomi. Krisis tersebut dimulai dengan pembunuhan Kaisar Severus Alexander di tangan pasukannya sendiri pada 235, mengawali periode lima puluh tahun dimana terdapat sekitar 26 pengklaim gelar Kaisar, yang sebagian besar ad...

لحن برودوايThe Broadway Melodyمعلومات عامةالصنف الفني فيلم موسيقي[1][2] — فيلم رومانسي[1][3][2] تاريخ الصدور 1929مدة العرض 100 دقيقةاللغة الأصلية الإنجليزيةالعرض أبيض وأسود البلد الولايات المتحدةالجوائز  جائزة الأوسكار لأفضل فيلم (أبريل 1930) الطاقمالمخرج هاري بوم...

 

Mountain in Seoul, South Korea NamsanHighest pointElevation270 m (890 ft)Coordinates37°32′59″N 126°59′31″E / 37.54972°N 126.99194°E / 37.54972; 126.99194GeographyNamsanJung-gu, Seoul, South KoreaShow map of SeoulNamsanNamsan (South Korea)Show map of South Korea NamsanHangul남산Hanja南山Revised RomanizationNamsanMcCune–ReischauerNamsan Namsan (Korean: 남산; lit. South Mountain), officially Namsan Mountain, is a 270-me...

 

CideburPembaptisan Cidebur, lukisan bersejarah abad ke-19 oleh Jan MatejkoKematiansetl. 24 Juni 972Poznań, PolandiaAyahSiemomysłIbutdk diketahui Czcibor (bahasa Latin: Cidebur; meninggal setelah tahun 972) merupakan seorang pangeran Polandia dari Wangsa Piast. Ia adalah putra Adipati Siemomysł dan adik penguasa Kristen pertama, Mieszko I dari Polandia. Kehidupan Menurut E. Rymar (2005), Cidebur mungkin telah menjadi gubernur tanah-tanah Pommern setelah penaklukan Mieszko I dari wilayah...

Former U.S. House district from 1837 to 2003 Connecticut's 6th congressional districtObsolete districtCreated18371960Eliminated18402000Years active1837-18431965-2003 CT-6 redirects here. The term may also refer to U.S. Route 6 in Connecticut. Connecticut's congressional districts, 1993–2003 (prior to elimination of 6th district).The sixth district is in the northwest corner, highlighted in pink. Connecticut's congressional districts, 2003-2013 Connecticut's 6th congressional district is a f...

 

1931 film The Affair of Colonel RedlDirected byKarel AntonWritten byKarel Tobis Ruda JuristStarringEmil Artur LongenMarie GrossováCinematographyEduard HoeschVáclav VíchEdited byKarel AntonMusic byWilly Engel-BergerProductioncompanyElektafilmDistributed byElektafilmRelease date 20 February 1931 (1931-02-20) Running time98 minutesCountryCzechoslovakiaLanguageCzech The Affair of Colonel Redl (Czech: Aféra plukovníka Redla) is a Czech drama film directed by Karel Anton.[1&...

 

RRP12 المعرفات الأسماء المستعارة RRP12, KIAA0690, ribosomal RNA processing 12 homolog معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 617723 MGI: MGI:2147437 HomoloGene: 22370 GeneCards: 23223 نمط التعبير عن الحمض النووي الريبوزي المزيد من بيانات التعبير المرجعية أورثولوج الأنواع الإنسان الفأر أنتريه 23223 107094 Ensembl ENSG0000...

Kuil Zeus Olympia di Athena. Pembangunan digalakkan oleh Peisistratos pada abad ke-6 SM dan diselesaikan oleh Kaisar Romawi Hadrianus pada abad ke-2 M. Dunia Yunani-Romawi, budaya Yunani-Romawi, atau dunia Yunani-Romawi adalah istilah yang menunjuk pada wilayah dan negara yang terkait dan dipengaruhi oleh bahasa, budaya, pemerintahan, dan agama Yunani dan Romawi kuno, baik secara historis, budaya, maupun etnis. Berdasarkan definisi di atas, dapat dikatakan bahwa pusat dunia Yunani-Romawi terl...

 

Берестейський державний технічний університетБрДТУ 52°05′47″ пн. ш. 23°45′31″ сх. д. / 52.09661065866942664° пн. ш. 23.75865240210271168° сх. д. / 52.09661065866942664; 23.75865240210271168Координати: 52°05′47″ пн. ш. 23°45′31″ сх. д. / 52.09661065866942664° пн. ш. 23.75865240210271168...

 

Building in grid reference , United KingdomSparsholt Roman VillaReconstruction of Sparsholt Roman Villa at Butser Ancient FarmLocation within HampshireGeneral informationLocationSparsholt, Hampshiregrid reference SU415301CountryUnited KingdomCoordinates51°04′09″N 1°24′34″W / 51.0691°N 1.4095°W / 51.0691; -1.4095Construction started2nd centuryDemolished5th century Sparsholt Roman Villa was a Roman villa near the village of Sparsholt, Hampshire, England. It w...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs to be updated. Please help update this article to reflect recent events or newly available information. (September 2011) This article consists almost entirely of a plot summary. Please help improve the article by adding more real-world context. (September 2011) (Learn how and when to remove this template message) This arti...

 

Character from Oz series For the science fiction novel, see Tin Woodman (novel). This article has an unclear citation style. The references used may be made clearer with a different or consistent style of citation and footnoting. (November 2017) (Learn how and when to remove this template message) Fictional character The Tin WoodmanOz characterThe Tin Woodman as illustrated by William Wallace Denslow (1900)First appearanceThe Wonderful Wizard of Oz (1900)Created byL. Frank BaumPortrayed byPie...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!