Portsmouth (Nuevo Hampshire)
|
Read other articles:
Flag of the Grand Orange Lodge of Canada The Grand Orange Lodge of British America, more commonly known as the Grand Orange Lodge of Canada or simply Orange Order in Canada, is the Canadian branch of the Orange Order, a Protestant fraternal organization that began in County Armagh in Ireland in 1795. It has played a large part in the history of Canada, with many prominent members including four prime ministers, among them Sir John A. Macdonald and John Diefenbaker.[1] Upper Canada and...
Thoda Pyaar Thoda MagicPoster filmSutradara Kunal Kohli Produser Aditya Chopra Kunal Kohli Ditulis oleh Kunal Kohli PemeranSaif Ali KhanRani MukerjiAmeesha PatelRishi KapoorPenata musikShankar-Ehsaan-LoySinematograferSudeep ChatterjeePenyuntingAmitabh ShuklaPerusahaanproduksiKunal Kohli ProductionsDistributorYash Raj FilmsTanggal rilis 27 Juni 2008 (2008-06-27) Durasi137 menitNegara India Bahasa Hindi Anggaran₹230 juta (US$3,2 juta)[1]Pendapatankotor₹372,53 juta (U...
Administrative entry restrictions A Hungarian passport Visa requirements for Hungarian citizens are administrative entry restrictions imposed on citizens of Hungary by the authorities of other states. As of 19 July 2023,[update] Hungarian citizens had visa-free or visa on arrival access to 186 countries and territories, ranking the Hungarian passport 6th in terms of travel freedom according to the Henley Passport Index.[1] Historical perspective Travel restrictions h...
Координати: 43°52′ пн. ш. 83°02′ зх. д. / 43.867° пн. ш. 83.033° зх. д. / 43.867; -83.033 Округ Гурон, Мічиган На мапі штату Мічиган Розташування штату Мічиган на мапі США Заснований 1840 Центр Бед-Екс Найбільше місто Бед-Екс Площа - Загальна - Суходолу - Во
Адміністративний устрій Закарпатської області з 2020 року Адміністративний устрій Закарпатської області — це поділ Закарпатської області на адміністративні одиниці: райони та територіальні громади. Історична дата утворення Закарпатської області: 22 січня 1946 року. З 20...
TV series This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (June 2015) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sou...
Gerichtsgebäude am Reichenspergerplatz Das Oberlandesgericht Köln (OLG Köln) ist eines der drei Oberlandesgerichte des Landes Nordrhein-Westfalen. Hier arbeiten etwa 120 Richter und rund 250 weitere Justizbedienstete. Inhaltsverzeichnis 1 Gerichtssitz und -bezirk 2 Geschichte 3 Leitung 4 Gerichtshierarchie 5 Berühmter Beamter und berühmte Prozesse 6 Gebäude 7 Bekannte Richter 8 Siehe auch 9 Literatur 10 Weblinks 11 Einzelnachweise Gerichtssitz und -bezirk Das Gericht hat seinen Sitz in ...
Bagian dari seri Gereja Katolik tentangAdorasi EkaristiMonstrans surya untuk penakhtaan Ekaristi. Dokumen kepausan Mirae caritatis Dominicae cenae Mysterium fidei Mediator Dei Ecclesia de Eucharistia Sacramentum caritatis Organisasi dan peristiwa Kongregasi Sakramen Mahakudus Abdi Sakramen Mahakudus Penyembah Abadi Perhimpunan Tabernakel Kongres Ekaristi Tokoh terkemuka St. Fransiskus dari Assisi St. Petrus Eymard St. Yohanes Maria Vianney Marie Tamisier Leo Dupont Uskup Agung Fulton J. Sheen...
Muslih-ud-Din Mushrif ibn-Abdullah ShiraziSaadi di kebun mawar, dari manuskrip Mughal dalam karyanya Gulistan, c. 1645Lahir1210[1]Shiraz, IranMeninggal1291 atau 1292[1]ShirazAliranPuisi Persia, Sastra PersiaMinat utamaPuisi, Mistisisme, Logika, Etika, Sufisme Abū-Muhammad Muslih al-Dīn bin Abdallāh Shīrāzī[2] (Persia: ابومحمد مصلحالدین بن عبدالله شیرازی), lebih dikenal dengan nama penanya Saadi (سعدی Saʿdī(Sa'diⓘ...
Ambassador of Russia to the United Statesпосол Российской Федерации в СШАSeal of the Russian Ministry of Foreign AffairsIncumbentAnatoly Antonovsince 21 August 2017Ministry of Foreign AffairsStyleHis ExcellencyResidenceRussian ambassador's residence in Washington, D.C.AppointerPresident of RussiaTerm lengthAt the pleasure of the presidentInaugural holderAndrey Yakovlevich DashkovAs ambassador of the Russian EmpireFormation17 August 1808SuccessionCharge d'affai...
Li ShuchengMinister of Agriculture of the People's Republic of ChinaIn office1949–1954Preceded byNoneSucceeded byLiao Luyan Personal detailsBorn1882Died1965NationalityChinesePolitical partyChinese Communist PartyAwardsOrder of Wen-Hu Li Shucheng (Chinese: 李書城; 1882–1965) was a senior leader of Kuomintang, and a politician of the People's Republic of China. In 1921, the first National Congress of the Chinese Communist Party was held in his house in Shanghai, thus the CCP was foun...
American writer (1885–1957) This article is about the American writer. For the Canadian author of children's novels, see Ken Roberts (author). For other people, see Kenneth Roberts. Kenneth RobertsBornKenneth Lewis RobertsDecember 8, 1885Kennebunk, Maine, USDiedJuly 21, 1957(1957-07-21) (aged 71)Kennebunkport, Maine, USOccupationWriterAlma materCornell UniversityPeriod1929–1957GenreHistorical fictionNotable worksNorthwest PassageNotable awardsPulitzer Prize Special CitationSpous...
Onverwacht Land Suriname Plaats Para Waterlichamen Para, Pararak Kreek Produceert Hout Beschreven op www.surinameplantages.comwww.surinameplantages.comwww.surinameplantages.com Gouverneur Van Asch van Wijk en gevolg op weg van La Prosperité naar Onverwacht in Boven-Para, Suriname. Foto Julius Eduard Muller, circa 1893. Tropenmuseum, objectnumber 60008968 Onverwacht, ook gespeld Onverwagt, is een voormalige plantage aan de rechteroever van de Hoykreek, een zijtak van de Pararivier. Plantage O...
Опис Обкладнка дебютного альбому австралийської групи Dead Can Dance Джерело en.wikipedia Час створення 1984 Автор зображення Невідомий Ліцензія див. нижче Обґрунтування добропорядного використання не вказано назву статті [?] Мета використання Проілюструвати статтю про альбом ...
Spanish TV series or program PINY: Institute of New YorkAlso known asPINY: Pinypon Institute of New York[1]Genre Comedy[2][3] Created by Victor M. Lopez[3] Rubén Zarauza[3] Directed by SalBa Combé[3] Javi Peces[3] Composers Guille Milkyway[3] Paul Bevoir[3] Country of originSpainOriginal languageEnglishNo. of seasons1[4]No. of episodes52[5] (list of episodes)ProductionExecutive producers Victor M. L...
American journalist Scott TakedaTakeda in 2014Born (1967-03-21) March 21, 1967 (age 56)Fort Collins, Colorado, U.S.NationalityAmericanAlma materUniversity of Colorado BoulderOccupation(s)Actor, filmmaker, photographerYears active1990–presentSpouseLori AllredWebsitescotttakeda.com Scott Takeda (born March 21, 1967) is an American actor, filmmaker and photographer. He is known for his recurring roles on the soap operas Days of Our Lives (2016–17, as Dr. Lee) and General Hospi...
У́личный теа́тр — театр, спектакли которого происходят на открытом пространстве — улице, площади, в парке и т. п., как правило, без сцены. Зрители часто вовлекаются в действие, при этом участвуют не только эмоционально, как в классическом театре, но могут непоср...
Rheinisches Industriemuseum The Rheinisches Industriemuseum (lit. Rhineland Museum of the Industry) is a decentralized museum with six locations in Rhineland, western Germany. The locations are: Oberhausen: the main site at the old Zinkfabrik Altenberg (zinc factory), near the Oberhausen main station Ratingen: Textilfabrik Cromford (textiles factory), the first factory in continental Europe, named after the Cromford Mill Solingen: Gesenkschmiede Hendrichs (forge) Bergisch Gladbach: Papiermüh...
Measure of distance in physical space This article is about a physical measurement. For other uses, see Length (disambiguation). Width redirects here. For other uses, see Width (disambiguation). Breadth redirects here. For ship measurements, see Breadth (nautical). LengthThe metric length of one kilometre is equivalent to the imperial measurement of 0.62137 miles.Common symbolslSI unitmetre (m)Other unitssee unit of lengthExtensive?yesDimensionL Length is a measure of distance. In t...
Any planar graph can be subdivided by removing a few vertices In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of O ( n ) {\displaystyle O({\sqrt {n}})} vertices from an n-vertex graph (where the O invokes big O notation) can partition the graph into disjoint subgraphs each of which has at most 2 n / 3 {\disp...