La civilización babilónica fue una de las primeras culturas en incorporar el estudio de la geometría. La invención de la rueda abrió el camino al estudio de la circunferencia y posteriormente al descubrimiento del número π (pi). También desarrollaron el sistema sexagesimal, al conocer que cada año cuenta con 365 días. Además implementaron una fórmula para calcular el área del trapecio rectángulo.[2]
El estudio de la astronomía y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes desarrolló simultáneamente el álgebra de ecuaciones y la geometría analítica, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial.
Axiomas, definiciones y teoremas
La geometría se propone ir más allá de lo alcanzado por la intuición. Por ello, es necesario un método riguroso, sin errores; para conseguirlo se han utilizado históricamente los sistemas axiomáticos. El primer sistema axiomático lo establece Euclides, aunque era incompleto. David Hilbert propuso a principios del siglo XX otro sistema axiomático, este ya completo.
Como en todo sistema formal, las definiciones, no solo pretenden describir las propiedades de los objetos, o sus relaciones. Cuando se axiomatiza algo, los objetos se convierten en entes abstractos ideales y sus relaciones se denominan modelos.
Esto significa que las palabras «punto», «recta» y «plano» deben perder todo significado material. Cualquier conjunto de objetos que verifique las definiciones y los axiomas cumplirá también todos los teoremas de la geometría en cuestión, y sus relaciones serán virtualmente idénticas al del modelo «tradicional».
Los siguientes son algunos de los conceptos más importantes en geometría.[4][5][6]
En geometría euclidiana, los axiomas y postulados son proposiciones que relacionan conceptos, definidos en función del punto, la recta y el plano. Euclides planteó cinco postulados y fue el quinto (el postulado de paralelismo) el que siglos después —cuando muchos geómetras lo cuestionaron al analizarlo— originará nuevas geometrías: la elíptica (geometría de Riemann) o la hiperbólica de Nikolái Lobachevski.
En geometría analítica, los axiomas se definen en función de ecuaciones de puntos, basándose en el análisis matemático y el álgebra. Adquiere otro nuevo sentido hablar de puntos, rectas o planos. f(x) puede definir cualquier función, llámese recta, circunferencia, plano, etc.
Euclides adoptó un enfoque abstracto de la geometría en sus Elementos,[7] uno de los libros más influyentes jamás escritos.[8] Euclides introdujo ciertos axiomas o postulados que expresan propiedades primarias o evidentes de puntos, líneas y planos.[9] Procedió a deducir rigurosamente otras propiedades mediante el razonamiento matemático. El rasgo característico de la aproximación de Euclides a la geometría fue su rigor, y ha llegado a conocerse como geometría axiomática o sintética.[10] A principios del siglo XIX, el descubrimiento de geometrías no euclidianas por Nikolai Ivanovich Lobachevsky (1792-1856), János Bolyai (1802-1860), Carl Friedrich Gauss (1777-1855) y otros[11] llevaron a un resurgimiento del interés por esta disciplina, y en el siglo XX, David Hilbert (1862–1943) empleó el razonamiento axiomático en un intento de proporcionar una base moderna de la geometría.[12]
Los puntos se consideran objetos fundamentales en la geometría euclidiana. Se han definido de diversas formas, incluida la definición de Euclides como "aquello que no tiene parte" [13] y mediante el uso de álgebra o conjuntos anidados.[14] En muchas áreas de la geometría, como la geometría analítica, la geometría diferencial y la topología, se considera que todos los objetos se construyen a partir de puntos. Sin embargo, se ha realizado algún estudio de geometría sin referencia a puntos.[15]
Líneas
Euclides describió una línea como "longitud sin ancho" que "se encuentra igualmente con respecto a los puntos sobre sí misma".[13] En las matemáticas modernas, dada la multitud de geometrías, el concepto de línea está estrechamente relacionado con la forma en que se describe la geometría. Por ejemplo, en geometría analítica, una línea en el plano a menudo se define como el conjunto de puntos cuyas coordenadas satisfacen una ecuación lineal dada,[16] pero en un entorno más abstracto, como la geometría de incidencia, una línea puede ser un objeto independiente, distinto del conjunto de puntos que se encuentran en él.[17] En geometría diferencial, una geodésica es una generalización de la noción de línea a espacios curvos.[18]
Planos
Un plano es una superficie plana bidimensional que se extiende infinitamente.[13] Los planos se utilizan en todas las áreas de la geometría. Por ejemplo, los planos se pueden estudiar como una superficie topológica sin hacer referencia a distancias o ángulos;[19] se puede estudiar como un espacio afín, donde se pueden estudiar la colinealidad y las proporciones pero no las distancias;[20] se puede estudiar como el plano complejo utilizando técnicas de análisis complejo ;[21] y así sucesivamente.
Ángulos
Euclides define un ángulo plano como la inclinación entre sí, en un plano, de dos líneas que se encuentran y no son rectas entre sí.[13] En términos modernos, un ángulo es la figura formada por dos rayos de luz, llamados lados del ángulo, que comparten un punto final común, llamado vértice del ángulo.[22]
En la geometría euclidiana, los ángulos se utilizan para estudiar polígonos y triángulos, además de formar un objeto de estudio por derecho propio.[13] El estudio de los ángulos de un triángulo o de los ángulos en un círculo unitario forma la base de la trigonometría.[23]
En geometría diferencial y cálculo, los ángulos entre curvas planas o curvas espaciales o superficies se pueden calcular utilizando la derivada.[24][25]
Curvas
Una curva es un objeto unidimensional que puede ser recto (como una línea) o no; las curvas en el espacio bidimensional se denominan curvas planas y las del espacio tridimensional se denominan curvas espaciales.[26]
En topología, una curva se define mediante una función de un intervalo de los números reales a otro espacio.[19] En geometría diferencial, se usa la misma definición, pero se requiere que la función definitoria sea diferenciable.[27] La geometría algebraica estudia las curvas algebraicas, que se definen como variedades algebraicas de dimensión uno.[28]
Superficies
Una superficie es un objeto bidimensional, como una esfera o un paraboloide.[29] En geometría diferencial[27] y topología,[19] las superficies se describen mediante "parches" bidimensionales (o vecindades ) que se ensamblan mediante difeomorfismos u homeomorfismos, respectivamente. En geometría algebraica, las superficies se describen mediante ecuaciones polinómicas.[28]
Variedades
Una variedad es una generalización de los conceptos de curva y superficie. En topología, una variedad es un espacio topológico donde cada punto tiene una vecindad que es homeomorfa al espacio euclidiano.[19] En geometría diferencial, una variedad diferenciable es un espacio donde cada vecindario es difeomórfico al espacio euclidiano.[27]
La longitud, el área y el volumen describen el tamaño o la extensión de un objeto en una dimensión, dos dimensiones y tres dimensiones, respectivamente.[31]
En geometría euclidiana y geometría analítica, la longitud de un segmento de línea a menudo se puede calcular mediante el teorema de Pitágoras.[32]
El área y el volumen pueden definirse como cantidades fundamentales separadas de la longitud, o pueden describirse y calcularse en términos de longitudes en un plano o espacio tridimensional.[31] Los matemáticos han encontrado muchas fórmulas explícitas para el área y fórmulas para el volumen de varios objetos geométricos. En cálculo, el área y el volumen se pueden definir en términos de integrales, como la integral de Riemann[33] o la integral de Lebesgue.[34]
El concepto de longitud o distancia se puede generalizar, dando lugar a la idea de métricas.[35] Por ejemplo, la métrica euclidiana mide la distancia entre puntos en el plano euclidiano, mientras que la métrica hiperbólica mide la distancia en el plano hiperbólico. Otros ejemplos importantes de métricas incluyen la métrica de Lorentz de la relatividad especial y la métrica semirriemanniana de la relatividad general.[36]
En otra dirección, los conceptos de longitud, área y volumen se amplían con la teoría de la medida, que estudia métodos de asignación de un tamaño o medida a conjuntos, donde las medidas siguen reglas similares a las del área y volumen clásicos.[37]
La congruencia y la similitud son conceptos que describen cuando dos formas tienen características similares.[38] En la geometría euclidiana, la similitud se usa para describir objetos que tienen la misma forma, mientras que la congruencia se usa para describir objetos que son iguales tanto en tamaño como en forma.[39] Hilbert, en su trabajo sobre la creación de una base más rigurosa para la geometría, trató la congruencia como un término indefinido cuyas propiedades están definidas por axiomas.
La congruencia y la similitud se generalizan en la geometría de transformación, que estudia las propiedades de los objetos geométricos que se conservan mediante diferentes tipos de transformaciones.[40]
Los geómetras clásicos prestaron especial atención a la construcción de objetos geométricos que se habían descrito de alguna otra manera. Clásicamente, los únicos instrumentos permitidos en las construcciones geométricas son el compás y la regla. Además, cada construcción tenía que completarse en un número finito de pasos. Sin embargo, algunos problemas resultaron difíciles o imposibles de resolver solo por estos medios, y se encontraron ingeniosas construcciones utilizando parábolas y otras curvas, así como dispositivos mecánicos.
Dimensión
Donde la geometría tradicional permitía las dimensiones de una línea de un plano y nuestro mundo ambiental concebido como un espacio tridimensional, los matemáticos y físicos han utilizado dimensiones superiores durante casi dos siglos.[41] Un ejemplo de uso matemático para dimensiones superiores es el espacio de configuración de un sistema físico, que tiene una dimensión igual a los grados de libertad del sistema. Por ejemplo, la configuración de un tornillo se puede describir mediante cinco coordenadas.[42]
En topología general, el concepto de dimensión se ha extendido desde los números naturales hasta la dimensión infinita (espacios de Hilbert, por ejemplo) y los números reales positivos (en geometría fractal).[43] En geometría algebraica, la dimensión de una variedad algebraica ha recibido varias definiciones aparentemente diferentes, que son todas equivalentes en los casos más comunes.[44]
Simetría
El tema de la simetría en geometría es casi tan antiguo como la ciencia de la geometría misma.[45] Las formas simétricas como el círculo, los polígonos regulares y los sólidos platónicos tenían un significado profundo para muchos filósofos antiguos[46] y fueron investigadas en detalle antes de la época de Euclides.[9] Los patrones simétricos ocurren en la naturaleza y fueron representados artísticamente en una multitud de formas, incluyendo los gráficos de Leonardo da Vinci, MC Escher y otros.[47] En la segunda mitad del siglo XIX, la relación entre simetría y geometría fue objeto de un intenso escrutinio.
El programa de Erlangen de Felix Klein proclamó que, en un sentido muy preciso, la simetría, expresada a través de la noción de un grupo de transformación, determina qué es la geometría.[48] La simetría en la geometría euclidiana clásica está representada por congruencias y movimientos rígidos, mientras que en la geometría proyectiva juegan un papel análogo las colinaciones, transformaciones geométricas que convierten las líneas rectas en líneas rectas.[49] Sin embargo, fue en las nuevas geometrías de Bolyai y Lobachevsky, Riemann, Clifford y Klein, y Sophus Lieque la idea de Klein de "definir una geometría a través de su grupo de simetría" encontró su inspiración.[50] Tanto las simetrías discretas como las continuas juegan un papel destacado en la geometría, la primera en la topología y la teoría de grupos geométricos,[51][52] la última en la teoría de Lie y la geometría de Riemann.[53][54]
Un tipo diferente de simetría es el principio de dualidad en la geometría proyectiva, entre otros campos. Este meta-fenómeno se puede describir aproximadamente de la siguiente manera: en cualquier teorema, intercambiar ”punto” con “plano”, “unirse” con “encuentro”, “se encuentra” con “contiene”, y el resultado es un teorema igualmente verdadero.[55] Existe una forma de dualidad similar y estrechamente relacionada entre un espacio vectorial y su espacio dual.[56]
Topología y geometría
El campo de la topología, que tuvo un gran desarrollo en el siglo XX, es en sentido técnico un tipo de geometría transformacional, en que las transformaciones que preservan las propiedades de las figuras son los homeomorfismos (por ejemplo, esto difiere de la geometría métrica, en que las transformaciones que no alteran las propiedades de las figuras son las isometrías). Esto ha sido frecuentemente expresado en la forma del dicho: "la topología es la geometría de la página de goma".
Tipos de geometría
Desde los antiguos griegos, han existido numerosas contribuciones a la geometría, particularmente a partir del siglo XVIII. Eso ha hecho que proliferen numerosas subramas de la geometría con enfoques muy diferentes. Para clasificar los diferentes desarrollos de la geometría moderna se pueden recurrir a diferentes enfoques:
Geometrías según el tipo de espacio
Los antiguos griegos manejaban un único tipo de geometría, a saber, la geometría euclídea, hábilmente codificada en los Elementos de Euclides por una escuela alejandrina encabezada por Euclides. Este tipo de geometría se basó en un estilo formal de deducciones a partir de cinco postulados básicos. Los cuatro primeros fueron ampliamente aceptados y Euclides los usó extensivamente, sin embargo, el quinto postulado fue menos usado y con posterioridad diversos autores trataron de demostrarlo a partir de los demás, la imposibilidad de dicha deducción llevó a constatar que junto con la geometría euclídea existían otros tipos de geometrías en que el quinto postulado de Euclídes no participaba. De acuerdo a las modificaciones introducidas en ese quinto postulado se llega a familias diferentes de geometrías o espacios geométricos diferentes entre ellos:
La geometría absoluta, que es el conjunto de hechos geométricos derivables a partir únicamente de los primeros cuatro postulados de Euclides.
La geometría euclídea, que es la geometría particular que se obtiene de aceptar como axioma también el quinto postulado. Los griegos consideraron dos variantes de geometría euclídea:
En el siglo XIX, Klein desarrolló el denominado Programa de Erlange que establecía otra forma de enfocar los conceptos geométricos: estudiar bajo qué diferentes tipos de transformaciones matemáticas se verificaban invarianzas. Así se identificaron grupos dotados de diversas operaciones y se plantearon subdisciplinas con base en cuales eran los tipos particulares de transformaciones bajo las cuales se registraban invarianzas. Este estudio permitió la siguiente clasificación geométrica:
Si bien Euclides básicamente se restringió a conceptos geométricos representables mediante figuras (puntos, líneas, círculos, etc.) el desarrollo de otras ramas de las matemáticas no conectadas inicialmente con la geometría propiamente dicha, llevó a poder aplicar las herramientas de otras ramas a problemas propiamente geométricos así nacieron:
. La geometría algebraica
. La geometría analítica
. La geometría descriptiva
El aprendizaje de la geometría implica el desarrollo de habilidades visuales y de argumentación.
Para que el aprendizaje de la geometría no carezca de sentido, es importante que el grupo docente se preocupe por buscar un equilibrio entre la asociación de habilidades de visualización y argumentación, pues ambas habilidades son fundamentales dentro del proceso formativo del individuo. Es decir, no se trata solo de enseñar contenidos como una “receta” o por cumplir con lo estipulado en el currículo sino que se pretende que con la enseñanza de la geometría el estudiantado aprenda a pensar lógicamente.[57]
El ser humano, desde su infancia, crea representaciones del mundo físico que le rodea. Estas le generan una necesidad (teórica y práctica) para lograr el entendimiento de ese mundo. El hemisferio derecho del cerebro resulta ser el más beneficiado ante la presencia de estímulos visuales, a diferencia del hemisferio izquierdo, que tiene la responsabilidad de desarrollar las capacidades verbales. El estudio de la geometría contribuye significativamente al desarrollo de esas necesidades espaciales de visualización; sin embargo, hasta una época histórica reciente, que data a partir de la década de los años 50, es cuando educadores matemáticos se interesaron por el estudio de dicho campo, al vincular la capacidad matemática con la capacidad espacial.[57]
Respecto a las dificultades que las estudiantes y los estudiantes presentan al estudiar geometría se encuentran: resolver un problema algebraicamente; calcular perímetros, áreas y volúmenes, debido a que no identifican cuál fórmula aplicar y dificultad para interpretar qué es lo que dice un problema. Al realizar el análisis por nivel, se puede observar que en el ciclo diversificado (décimo y undécimo año) la principal dificultad que presentan es interpretar lo que dice un problema. La principal dificultad de las alumnas y alumnos de séptimo, octavo y noveno año, es, respectivamente, comprender las fórmulas del perímetro, áreas y volúmenes y aprender las definiciones; resolver una situación problema algebraicamente y dificultad para extraer información de un dibujo geométrico.[57]
↑Gerla, G. (1995). «Pointless Geometries». En Buekenhout, F.; Kantor, W., eds. Handbook of incidence geometry: buildings and foundations. North-Holland. pp. 1015-1031. Archivado desde el original el 10 de abril de 2016.
↑Briggs, William L., and Lyle Cochran Calculus. "Early Transcendentals." ISBN978-0-321-57056-7.
↑Yau, Shing-Tung; Nadis, Steve (2010). The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions. Basic Books. ISBN978-0-465-02023-2.
Nikolai I. Lobachevsky, Pangeometry, translator and editor: A. Papadopoulos, Heritage of European Mathematics Series, Vol. 4, European Mathematical Society, 2010.
У этого термина существуют и другие значения, см. Тбилиси (значения). Запрос «Тифлис» перенаправляется сюда; об астероиде см. (753) Тифлис. ГородТбилисигруз. თბილისი Флаг Герб 41°43′ с. ш. 44°48′ в. д.HGЯO Страна Грузия Мэр Каха Каладзе История и география Основа
Peta tingkat harapan hidup dunia Harapan hidup adalah perkiraan jumlah tahun hidup dari individu yang berdiam di suatu wilayah dari sekelompok makhluk hidup tertentu. Lihat pula Age-adjusted life expectancy Morbiditas Mortalitas Demografi (ilmu populasi) Ekonomi Daftar negara berdasarkan harapan hidup Jatah Hidup Standar Nabi Pranala luar Wikimedia Commons memiliki media mengenai Life expectancy. (Inggris) Harapan hidup di AS Diarsipkan 2023-07-14 di Wayback Machine. (Inggris) Map of life exp...
هذه المقالة عن صاروخ زلزال. لمعانٍ أخرى، طالع زلزال (توضيح). زلزال-2 النوع مدفعية صاروخية بلد الأصل إيران تاريخ الاستخدام فترة الاستخدام منذ 1993– وحتى الوقت الحالي المستخدمون إيران سوريا لبنان (حزب الله) تاريخ الصنع المصنع إيران المواصفات الوزن 3,545 ...
Jaime Bertin Alcalde de Osorno 6 de diciembre de 2008-28 de junio de 2021Predecesor Mauricio Saint-Jean AstudilloSucesor Emeterio Carrillo Torres Intendente de la Región de Los Lagos 11 de marzo de 2006-4 de enero de 2008Presidente Michelle Bachelet JeriaPredecesor Jorge Vives DibarratSucesor Sergio Galilea Ocón Concejal de Osorno 11 de marzo de 1992-10 de marzo de 1996 Información personalNacimiento 18 de julio de 1954Entre Lagos, OsornoNacionalidad ChilenaFamiliaCónyuge Myrtha Teuber Gi...
Anna-Nicole Heinrich (2021) Anna-Nicole Heinrich (* 13. April 1996[1] in Schwandorf[2]) ist eine deutsche Kirchenfunktionärin. Sie ist seit 2021 Präses der Synode der Evangelischen Kirche in Deutschland. Leben Anna-Nicole Heinrich stammt aus einem nicht-christlichen Elternhaus. Ihre Eltern zogen nach der Wiedervereinigung vom thüringischen Saalfeld nach Nittenau im bayerischen Landkreis Schwandorf. Dort wuchs sie mit ihrer acht Jahre jüngeren Schwester auf, der Vater arbei...
Cet article est une ébauche concernant un festival de cinéma et l’Italie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Mostra de Venise 1990 47e Mostra de Venise Détails Dates du 4au 14 septembre 1990 Lieu Palais du cinéma, Venise Italie Président du jury Gore Vidal Site web http://www.festival-cannes.com Résumé Lion d'or Rosencrantz et Guildenstern sont morts Grand prix du jury Un ange à ma table Li...
Anastasia dari KievRatu HungariaBerkuasa1046–1060Penobatan1046PenerusAdelaide/Rixa dari PolandiaKelahiran~1023Kematian1074/1096 [usia ~51/73]Biara Admont, StiriaPemakamanBiara Admont, StiriaWangsaRurikNama lengkapAnastasia YaroslavovnaAyahYaroslav yang BijaksanaIbuSanta AnnaPasanganAndrás yang PutihAnakAdelaide Salamon David Anastasia dari Kiev (sekitar tahun 1023 – 1074/1096) merupakan seorang Ratu Hungaria sebagai istri Raja András yang Putih. Ia merupakan putri sulung Pangeran Agung ...
Ilirska BistricaIllyrisch Feistritz Basisdaten Staat Slowenien Slowenien Historische Region Küstenland / Primorska Statistische Region Primorsko-notranjska (Küstenland-Innerkrain) Koordinaten 45° 34′ N, 14° 14′ O45.56666666666714.233333333333Koordinaten: 45° 34′ 0″ N, 14° 14′ 0″ O Fläche 480 km² Einwohner 13.379 (2021) Bevölkerungsdichte 28 Einwohner je km² Telefonvorwahl (+386) 05 Postleitzahl 6250 Kfz-Kennzeic...
International cricket tour Pakistan in South Africa 1997-98 South Africa PakistanDates 29 January 1998 – 10 March 1998Captains Gary Kirsten (1st Test)Hansie Cronje (2nd and 3rd Tests) Aamer Sohail (1st and 2nd Tests)Rashid Latif (3rd Test)Test seriesResult 3-match series drawn 1–1Most runs Mark Boucher (188) Azhar Mahmood (327)Most wickets Allan Donald (16) Waqar Younis (16)Player of the series Azhar Mahmood (PAK) The Pakistan national cricket team toured South Africa du...
Shinty club in Argyll and Bute, Scotland, UK This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Col-Glen Shinty Club – news · newspapers · books · scholar · JSTOR (August 2018) (Learn how and when to remove this template message) Col-GlenFull nameCol-Glen Shinty ClubGaelic nameComann Camanachd Chaol-GhleannFoun...
Belgian journalist, statesman Charles RogierPrime Minister of BelgiumIn office12 August 1847 – 31 October 1852MonarchLeopold IPreceded byBarthélémy de Theux de MeylandtSucceeded byHenri de BrouckèreIn office9 November 1857 – 3 January 1868MonarchsLeopold ILeopold IIPreceded byPierre de DeckerSucceeded byWalthère Frère-OrbanPresident of the Chamber of RepresentativesIn office1 August 1878 – 13 November 1878Preceded byXavier Victor ThibautSucceeded byJules ...
Helicopter Attack Squadron (Light) 5Official HA(L)-5 PatchActive1 March 1977 – 20 October 1988Country United States of AmericaBranch United States NavyTypeHelicopterRoleSpecial Warfare Support, Close Air SupportGarrison/HQNaval Air Station Point Mugu, CaliforniaNickname(s)Blue HawksColorsBlueMascot(s)Blue HawkMilitary unit Helicopter Attack Squadron (Light) Five, known by the US Navy designation HA(L)-5 (sometimes stylized as HAL-5), was the initial designation of a Naval Special Warfa...
This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this template message) 2008 South Korean filmThe Divine WeaponTheatrical posterKorean nameHangul신기...
Species of sawfly Nematus myosotidis Nematus myosotidis female North Wales Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hymenoptera Suborder: Symphyta Family: Tenthredinidae Genus: Nematus Species: N. myosotidis Binomial name Nematus myosotidis(Fabricius, 1804) Nematus myosotidis is a Palearctic species of sawfly.[1] References ^ Benson, R.B., 1952. Handbooks for the Identification of British Insects. Hymenoptera, Symphyta...
2001 film The RetrieversDVD CoverDirected byPaul SchneiderWritten byLarry KetronProduced byJonathan BognerStarringRobert HaysMel HarrisAlana AustinTaylor EmersonCinematographyDon E. FauntLeRoyEdited byAndrew CohenMusic byJoseph ConlanProductioncompaniesAnimal PlanetTag EntertainmentDistributed byAnimal PlanetRelease date July 30, 2001 (2001-07-30) Running time95 minutesCountryUnited StatesLanguageEnglish The Retrievers is a 2001 television film starring Robert Hays, Mel Harris,...
В Википедии есть статьи о других людях с такой фамилией, см. Рукавишников; Рукавишников, Иван. Иван Сергеевич Рукавишников 1926 год Дата рождения 3 (15) мая 1877(1877-05-15) Место рождения Нижний Новгород Дата смерти 9 апреля 1930(1930-04-09) (52 года) Место смерти Москва Гражданство Россий...
American educator and writer Cindy LovellBornCindy Louise Pletcher (1956-05-06) May 6, 1956 (age 67)Altoona, Pennsylvania, U.S.Alma materStetson University (BA, MA) and The University of Iowa (Ph.D.)Occupation(s)Educator, WriterEmployerEpic Flight AcademyKnown forEducation, Writing, Mark TwainNotable workMark Twain: Words & Music, Orthophonic Joy: The 1927 Bristol Sessions Revisited, and Linguistics for K-12 Classroom ApplicationAwards2010 Hannibal NAACP Martin Luther King,...