La unidad de medida de volumen en el Sistema Internacional de Unidades es el metro cúbico. En el sistema métrico decimal, una unidad de volumen para sólidos era el estéreo, igual al metro cúbico, pero actualmente poco usada. En ese mismo sistema, para medir la capacidad de líquidos, se creó el litro, que es aceptado por el SI. Por razones históricas, existen unidades separadas para ambas; sin embargo, están relacionadas por la equivalencia entre el litro y el decímetro cúbico:
1 dm³ = 1 litro = 0,001 m³ = 1000 cm³.
Historia
Historia antigua
La precisión de las mediciones de volumen en la época antigua suele oscilar entre 10–50 mL (0.3–2 US fl oz; 0.4–2 imp fl oz).[3]: 8 Las primeras evidencias de cálculo de volumen proceden del antiguo Egipto y Mesopotamia como problemas matemáticos, aproximando el volumen de formas simples como cuboides, cilindros, frustum y conos. Estos problemas matemáticos han sido escritos en el Papiro Matemático de Moscú (c. 1820 a. C.).[4]: 403 En el Papiro Reisner, los antiguos egipcios han escrito unidades concretas de volumen para granos y líquidos, así como una tabla de longitud, anchura, profundidad y volumen para bloques de material.[3]: 116 Los egipcios utilizan sus unidades de longitud (el cubit, palm, digit) para idear sus unidades de volumen, como el cubit de volumen[3]: 117 o negar[4]: 396 (1 cúbito × 1 cúbito × 1 cúbito), volumen palma (1 cúbito × 1 cúbito × 1 palma) y volumen dígito (1 cúbito × 1 cúbito × 1 dígito).[3]: 117
Los tres últimos libros de Euclid's Elements, escritos en torno al año 300 a. C., detallaban las fórmulas exactas para calcular el volumen de paralelepípedos, conos, pirámides, cilindros y esferas. Las fórmulas fueron determinadas por matemáticos anteriores utilizando una forma primitiva de integración, descomponiendo las formas en piezas más pequeñas y sencillas.[4]: 403 Un siglo más tarde, Arquímedes (c. 287-212 a. C.) ideó la fórmula aproximada del volumen de varias formas utilizando el enfoque del método de agotamiento, es decir, derivar soluciones a partir de fórmulas anteriores conocidas de formas similares. La integración primitiva de formas también fue descubierta independientemente por Liu Hui en el siglo III EC, Zu Chongzhi en el siglo V EC, el Medio Oriente y la India.[4]: 404
Arquímedes también ideó una forma de calcular el volumen de un objeto irregular, sumergiéndolo bajo el agua y midiendo la diferencia entre el volumen de agua inicial y final. La diferencia de volumen de agua es el volumen del objeto.[4]: 404 Aunque muy popularizada, Arquímedes probablemente no sumerge la corona de oro para hallar su volumen y, por tanto, su densidad y pureza, debido a la extrema precisión que ello implica.[5] En su lugar, es probable que ideara una forma primitiva de equilibrio hidrostático. En ella, la corona y un trozo de oro puro con un peso similar se colocan en ambos extremos de una balanza sumergida bajo el agua, que se inclinará en consecuencia debido al principio de Arquímedes.[6]
En la Edad Media se crearon muchas unidades para medir el volumen, como el sester, el amber, el coomb y la seam. La enorme cantidad de estas unidades motivó a los reyes británicos a estandarizarlas, lo que culminó en el estatuto Assisa panis et cervisiæ de 1258 por Enrique III de Inglaterra. El estatuto estandarizó el peso, la longitud y el volumen, además de introducir el peny, la onza, la libra, el galón y el bushel.[3]: 73–74 En 1618, la Farmacopea de Londres (catálogo de compuestos medicinales) adoptó el galón romano[7] o congius'[8] como unidad básica de volumen y dio una tabla de conversión a las unidades de peso de los boticarios.[7] Por esta época, las mediciones de volumen son cada vez más precisas y la incertidumbre se reduce a entre 1–5 mL (0.03–0.2 US fl oz; 0.04–0.2 imp fl oz).[3]: 8
Existen multitud de unidades de volumen escalar, que se utilizan dependiendo del contexto o de la finalidad de la medición. En los ámbitos académicos o técnicos se suelen emplear el metro y sus derivados. Para expresar el volumen de sustancias líquidas o gaseosas, e incluso para mercancías a granel, se suele recurrir a la capacidad del recipiente que lo contiene, medida en litros y sus derivados. En ocasiones, cuando la densidad del material es constante y conocida, se pueden expresar las cantidades por su equivalente en peso en lugar de en volumen.
Muchas de las unidades de volumen existentes se han empleado históricamente para el comercio de mercancías o para el uso diario. Aun compartiendo el mismo nombre, muchas unidades varían significativamente de una región a otra.[9]
La unidad más utilizada para medir el volumen de líquidos o recipientes es el litro. El litro está admitido en el S.I. aunque estrictamente no forma parte de él.[11]
A lo largo de la historia, se han utilizado diferentes unidades de volumen que varían de una cultura a otra. En general, en casi todas ellas existían dos tipos de medida de volumen: para líquidos y para sólidos. Incluso el sistema métrico decimal original las definió como unidades diferentes: el litro (igual a 1 dm³) para líquidos y el estéreo (igual a 1 m³) para sólidos. Físicamente son equivalentes y actualmente no se establecen diferencias, pero antiguamente la medida, como concepto, estaba indisociablemente unida al método para llevarla a cabo (el diccionario académico recogíi hasta 1956 ‘lo que sirve para medir’ como una acepción de medida): así, el volumen se basaba en tomar las medidas longitudinales del cuerpo sólido y luego operar, mientras que la capacidad se basaba en lo que podían contener recipientes de determinados tamaños.
En el ámbito culinario, especialmente en los países anglosajones y los que están bajo su influencia, es habitual emplear medidas de volumen dependientes de los distintos recipientes de utilización frecuente, pero sin una definición precisa, como la cucharada, la cucharadita o la taza. Esta costumbre proviene de la falta de medidores de peso (balanzas) de suficiente precisión, tales como las que ahora existen.
En medicina y en enfermería, el volumen de una gota está definido con un diámetro estandarizado (1 mililitro son aproximadamente 20 gotas), pero no así en farmacia, pues, dependiendo del diámetro del dosificador de un medicamento, la equivalencia puede estar entre 15 y 40 gotas por mililitro.[13]
Donde g es precisamente el determinante del tensor métrico definido en toda la subvariedad riemanniana.
Generalizaciones
Dado un subconjunto compacto del espacio euclídeo tridimensional o de una variedad riemanniana de dimensión 3 puede definirse el volumen de dicho subconjunto mediante la medida de Hausdorff-Besicovitch para definir el volumen dicho subconjunto. El número calculado así será un número del intervalo .