En matematiko, hilberta spaco (nomata laŭ David Hilbert) estas ĝeneraligo de eŭklida spaco sen limigo pri finia nombro de dimensioj. Tial ĝi estas spaco provizita per skalara produto, el kio sekvas, ke ĝi havas nociojn de distanco kaj angulo (inkluzive de la nocio de orteco). Ankaŭ, ĝi kontentigas pli teknikan kompletecon, kiu certigas, ke limigoj ekzistas kiam oni ilin atendas, kiu faciligas diversajn difinojn de kalkulo. Hilbertaj spacoj provizas kuntekston por formaligi kaj ĝeneraligi la konceptojn de la fourier-a serio en terminoj de ajnaj perpendikularaj polinomoj kaj de la fourier-a konverto, kiu estas centra koncepto de funkcionala analitiko. Hilbertaj spacoj estas gravaj en matematika formulaĵo de kvantummekaniko.
Enkonduko
La eroj de abstrakta Hilberta spaco estas nomitaj kiel vektoroj. En aplikoj, ili estas tipe vicoj de kompleksaj nombroj aŭ funkcioj. En kvantummekaniko ekzemple, fizika sistemo estas priskribita per kompleksa hilberta spaco kiu enhavas la ondfunkciojn por eblaj statoj de la sistemo. Vidu artikolon matematika formulaĵo de kvantummekaniko por detaloj. La Hilberta spaco de ebenaj ondoj kaj baraj statoj kutime estas uzata en kvantummekaniko estas rigita hilberta spaco.
Difino
Ĉiu ena produto <.,.> sur reela aŭ kompleksa vektora spaco H donas pligrandiĝon al normo ||.|| kiel:
H estas hilberta spaco se ĝi estas kompleta je ĉi tiu normo. Kompleteco en ĉi tiu ĉirkaŭteksto signifas ke ĉiu koŝia vico de eroj de la spaco konverĝas al ero en la spaco, en senco ke normo de diferencoj proksimiĝoj al nulo. Ĉiu hilberta spaco estas tial ankaŭ banaĥa spaco (sed ne ĉiam male banaĥa spaco estas hilberta spaco).
Ĉiuj finidimensiaj enprodutaj spacoj (kiel eŭklida spaco kun la ordinara skalara produto) estas hilbertaj spacoj. Tamen, la malfinidimensia ekzemploj pli gravaj en la jenaj aplikoj:
Vidu ankaŭ
<!-- --> |
Ĉi tiu artikolo enhavas dume forkomentitajn partojn de la teksto, ĉar ili ankoraŭ ne estas sufiĉe bonaj. Vi povas redakti la paĝon kaj plibonigi kaj malkomenti la forkomentitajn partojn. |