Weierstrass–Enneper parameterization

In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.

Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as 1863.

Weierstrass parameterization facilities fabrication of periodic minimal surfaces

Let and be functions on either the entire complex plane or the unit disk, where is meromorphic and is analytic, such that wherever has a pole of order , has a zero of order (or equivalently, such that the product is holomorphic), and let be constants. Then the surface with coordinates is minimal, where the are defined using the real part of a complex integral, as follows:

The converse is also true: every nonplanar minimal surface defined over a simply connected domain can be given a parametrization of this type.[1]

For example, Enneper's surface has f(z) = 1, g(z) = zm.

Parametric surface of complex variables

The Weierstrass-Enneper model defines a minimal surface () on a complex plane (). Let (the complex plane as the space), the Jacobian matrix of the surface can be written as a column of complex entries: where and are holomorphic functions of .

The Jacobian represents the two orthogonal tangent vectors of the surface:[2]

The surface normal is given by

The Jacobian leads to a number of important properties: , , , . The proofs can be found in Sharma's essay: The Weierstrass representation always gives a minimal surface.[3] The derivatives can be used to construct the first fundamental form matrix:

and the second fundamental form matrix

Finally, a point on the complex plane maps to a point on the minimal surface in by where for all minimal surfaces throughout this paper except for Costa's minimal surface where .

Embedded minimal surfaces and examples

The classical examples of embedded complete minimal surfaces in with finite topology include the plane, the catenoid, the helicoid, and the Costa's minimal surface. Costa's surface involves Weierstrass's elliptic function :[4] where is a constant.[5]

Helicatenoid

Choosing the functions and , a one parameter family of minimal surfaces is obtained.

Choosing the parameters of the surface as :

At the extremes, the surface is a catenoid or a helicoid . Otherwise, represents a mixing angle. The resulting surface, with domain chosen to prevent self-intersection, is a catenary rotated around the axis in a helical fashion.

A catenary that spans periodic points on a helix, subsequently rotated along the helix to produce a minimal surface.
The fundamental domain (C) and the 3D surfaces. The continuous surfaces are made of copies of the fundamental patch (R3)

Lines of curvature

One can rewrite each element of second fundamental matrix as a function of and , for example

And consequently the second fundamental form matrix can be simplified as

Lines of curvature make a quadrangulation of the domain

One of its eigenvectors is which represents the principal direction in the complex domain.[6] Therefore, the two principal directions in the space turn out to be

See also

References

  1. ^ Dierkes, U.; Hildebrandt, S.; Küster, A.; Wohlrab, O. (1992). Minimal surfaces. Vol. I. Springer. p. 108. ISBN 3-540-53169-6.
  2. ^ Andersson, S.; Hyde, S. T.; Larsson, K.; Lidin, S. (1988). "Minimal Surfaces and Structures: From Inorganic and Metal Crystals to Cell Membranes and Biopolymers". Chem. Rev. 88 (1): 221–242. doi:10.1021/cr00083a011.
  3. ^ Sharma, R. (2012). "The Weierstrass Representation always gives a minimal surface". arXiv:1208.5689 [math.DG].
  4. ^ Lawden, D. F. (2011). Elliptic Functions and Applications. Applied Mathematical Sciences. Vol. 80. Berlin: Springer. ISBN 978-1-4419-3090-3.
  5. ^ Abbena, E.; Salamon, S.; Gray, A. (2006). "Minimal Surfaces via Complex Variables". Modern Differential Geometry of Curves and Surfaces with Mathematica. Boca Raton: CRC Press. pp. 719–766. ISBN 1-58488-448-7.
  6. ^ Hua, H.; Jia, T. (2018). "Wire cut of double-sided minimal surfaces". The Visual Computer. 34 (6–8): 985–995. doi:10.1007/s00371-018-1548-0. S2CID 13681681.

Read other articles:

Tongkat Jacob di Museo Galileo, Firenze Mengukur ketinggian bintang dengan tongkat Jacob Istilah tongkat Jacob dipakai untuk beberapa hal. Dalam bentuk paling dasarnya, tongkat Jacob adalah tongkat atau tiang dengan penanda panjang Bacaan tambahan Levi ben Gerson and the Cross Staff Revisited, Bernard R Goldstein Diarsipkan 2020-01-10 di Wayback Machine.

 

село Суржа Каплиця Святого ПателеймонаКаплиця Святого Пателеймона Країна  Україна Область Хмельницька область Район Кам'янець-Подільський Громада Орининська сільська громада Основні дані Засноване 1410 Населення 206 Площа 0,778 км² Густота населення 264,78 осіб/км² П...

 

Есмір Гогендорн Esmir Hoogendoorn Громадянство  НідерландиДата народження 31 березня 1969Завершення кар'єри 1994Призові, USD $33,597Одиночний розрядТитулів 1 ITFНайвища позиція Ранг 155 (24 серпня 1992)МейджориРолан Гаррос К2р (1993)США К1р (1992)Парний розрядТитулів 4 ITFНайвища позиція Ранг 247 (12 ...

Avro 621 Tutor Descrição Tipo / Missão Avião de Instrução País de origem  Reino Unido Fabricante Avro Período de produção de 1930-1936 Quantidade produzida 795 Desenvolvido de Avro 504 Desenvolvido em setembro de 1929 Primeiro voo em dezembro de 1929 Introduzido em 1932 Aposentado em 1948 Variantes 5 Tripulação 2 Passageiros 2 Especificações Propulsão Motor(es) 1 × motor em linha de cinco cilindros, Armstrong Siddeley Mongoose IIIA Potência (por motor) 240 hp (...

 

Енсар ХайдерEnsar HajderЗагальна інформаціяГромадянство  Боснія і ГерцеговинаНародження 27 червня 1991(1991-06-27) (32 роки)ТузлаЗріст 194 смСпортВид спорту спортивне плавання Участь і здобутки Енсар Хайдер (27 червня 1991) — боснійський плавець. Учасник Олімпійських Ігор 2012 рок...

 

Pour les articles homonymes, voir Hop. Trip hopMassive Attack en concert en 2007.DétailsDate d'émergence 1992Pays d'origine Royaume-UniOrigines stylistiques Musique expérimentale, house, electronica, RnB, jazz, funk, soul, dub, hip-hop, breakbeat, ambient, downtempo, chill-out, rock psychédélique, lounge, musique minimaliste, musique psychédélique, rock alternatif[1],[2]Instruments typiques Clavier, platine vinyle, échantillonneur, cuivre, instrument à cordes frottées, saxophone, fl...

1979 compilation album by Frank Sinatra & Antônio Carlos JobimSinatra-Jobim SessionsCompilation album by Frank Sinatra & Antônio Carlos JobimReleased1979Recorded1967, 1969GenreJazzbossa novaLength50:27LabelWEA BrasilFrank Sinatra chronology Portrait of Sinatra – Forty Songs from the Life of a Man(1977) Sinatra-Jobim Sessions(1979) Trilogy: Past Present Future(1980) Antônio Carlos Jobim chronology Urubu(1976) Sinatra-Jobim Sessions(1979) Terra Brasilis(1980) The Sinatra–...

 

コクヌストモドキ 分類 界 : 動物界 Animalia 門 : 節足動物門 Arthropoda 綱 : 昆虫綱 Insecta 目 : コウチュウ目 Coleoptera 科 : ゴミムシダマシ科 Tenebrionidae 属 : コクヌストモドキ属 Tribolium 種 : コクヌストモドキ T. castaneum 学名 Tribolium castaneum(Herbst, 1797) 英名 red flour beetle コクヌストモドキ(擬穀盗[1]、Tribolium castaneum)は、ゴミムシダマシ科の甲虫である。世界中で穀物等の貯

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (نوفمبر 2023) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة

City in Alaska, United States City in Alaska, United StatesWainwright UlġuniqCityWainwright during the summer months with the Arctic Ocean in the backgroundWainwrightLocation in AlaskaCoordinates: 70°38′50″N 160°00′58″W / 70.64722°N 160.01611°W / 70.64722; -160.01611CountryUnited StatesStateAlaskaBoroughNorth SlopeIncorporatedDecember 31, 1962[1]Government • MayorRaymond Henry Savik Nashookpuk.[2] • State senatorDonn...

 

Australian jurist The Honourable DrAlex ChernovAC KCChernov at an Anzac Day ceremony in 201328th Governor of VictoriaIn office8 April 2011 – 30 June 2015MonarchElizabeth IIPremierTed BaillieuDenis NapthineDaniel AndrewsLieutenantMarilyn WarrenPreceded byDavid de KretserSucceeded byLinda Dessau Personal detailsBorn (1938-05-12) 12 May 1938 (age 85)Vilnius, LithuaniaSpouseElizabeth HopkinsEducationUniversity of MelbourneProfessionBarrister, judge Alex Chernov AC KC (...

 

Prof. Dr. drh. H.Rohidin MersyahMMA.Gubernur Bengkulu ke-10PetahanaMulai menjabat 25 Februari 2021WakilRosjonsyah SyahiliPendahuluHamka Sabri (Plh.)Robert Simbolon (Pj.)Masa jabatan10 Desember 2018 – 12 Februari 2021(Pelaksana Tugas: 22 Juni 2017 — 10 Desember 2018)WakilDedy ErmansyahPendahuluRidwan MuktiPenggantiHamka Sabri (Plh.)Robert Simbolon (Pj.)Wakil Gubernur Bengkulu ke-8Masa jabatan12 Februari 2016 – 22 Juni 2017GubernurRidwan MuktiPendahuluSultan ...

هاينريش إرنست شيرمر معلومات شخصية الميلاد 27 أغسطس 1814(1814-08-27)لايبزيغ الوفاة 6 ديسمبر 1887 (73 سنة)غيسن الجنسية ألمانياالنرويج الحياة العملية المهنة مهندس معماري  اللغات الألمانية  تعديل مصدري - تعديل   هاينريش إرنست شيرمر (بالألمانية: Heinrich Ernst Schirmer)‏ (و. 1814 – 1887 م) هو مهندس...

 

Forum for Puerto Rican culture in the Lower East Side of Manhattan Nuyorican Poets CaféNuyorican Poets Cafe building on East 3rd St. in Alphabet CityAddress236 East 3rd StreetLocationNew York CityCoordinates40°43′19″N 73°58′54″W / 40.721951°N 73.9817816°W / 40.721951; -73.9817816Public transitSecond AvenueOpened1975 (1975)Websitewww.nuyorican.org The Nuyorican (Puerto Rican New Yorkers) Poets Cafe is a nonprofit organization in Alphabet City, on the L...

 

AsambhavPoster film untuk AsambhavSutradara Rajiv Rai Produser Gulshan Rai Ditulis oleh Rajiv Rai PemeranArjun RampalPriyanka ChopraPenata musikViju ShahSinematograferSukumar JataniaDistributorTrimurti FilmsTanggal rilis 23 Juli 2004 (2004-07-23) Durasi149 menitNegara India Swiss Bahasa Hindi Pendapatankotor₹50 juta (US$700,000)[1]Asambhav (Hindi: असम्भव, terjemahan: Mustahil) adalah film cerita seru aksi Hindi India 2004 yang disutradarai oleh Rajiv Rai d...

Насаком (индон. Nasakom) — политическая концепция, действовавшая в Индонезии в поздний период президентства Сукарно. Это акроним, составленный на основе индонезийских слов NASionalisme (Национализм), Agama (Религия) и KOMunisme (Коммунизм) [1]. Сукарно — автор концепции Насаком В 1956 ...

 

American rapper Kool A.D.Kool A.D. performing at Governors Ball in New York City in 2011Background informationBirth nameVictor VazquezAlso known asLittle DragonBig DragonBorn (1983-11-16) November 16, 1983 (age 40)San Francisco Bay Area, California, U.S.GenresHip hopOccupation(s)Rapperrecord producerauthorartistYears active2005–presentLabelsVeeheadGreedheadWebsitekoolad.bandcamp.comMusical artist Victor Vazquez (born November 16, 1983),[1] also known by his stage name Kool A.D....

 

张帆可以指: 張帆,又名張彼得,香港特約演員,前民建聯葵涌支部副主席 张帆 (政治人物),十一届全国政协常委、民进中央副主席、福建省委主委、福建省政协副主席 张帆 (1964年),中华人民共和国政治人物,湖南省文化和旅游厅副厅长 张帆 (1967年),中国历史学家,北京大学历史学系教授 张帆 (1972年),中华人民共和国政治人物,福州市台江区区委书记 南帆,原名张帆...

Kejuaraan Eropa UEFA 2024UEFA Euro 2024 (Inggris)Fußball-Europameisterschaft 2024 (Jerman)United by Football. Vereint im Herzen Europas.(Disatukan oleh sepak bola. Bersatu di jantung Eropa.)Informasi turnamenTuan rumahJermanJadwalpenyelenggaraan14 Juni – 14 Juli 2024Jumlahtim peserta24Tempatpenyelenggaraan10 (di 10 kota)← 2020 2028 → Kejuaraan Eropa UEFA 2024, biasanya disebut UEFA Euro 2024 (ditulis sebagai UEFA EURO 2024) atau hanya Euro 2024 (di Indonesia, disebut pula ...

 

Multi-parasport event in London, England XIV Paralympic GamesHost cityLondon, United KingdomMottoInspire a GenerationNations164Athletes4,302Events503 in 20 sportsOpening29 AugustClosing9 SeptemberOpened byQueen Elizabeth IICauldronMargaret MaughanStadiumLondon Olympic StadiumSummer← Beijing 2008Rio 2016 → Winter← Vancouver 2010Sochi 2014 → 2012 Summer Olympics Part of a series on2012 Summer Paralympics Bid process (bid details) Development (venues, ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!