In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser).
It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a function. The inequality is a limiting case of Sobolev embedding and can be stated as the following theorem:
Let Ω {\displaystyle \Omega } be a bounded domain in R n {\displaystyle \mathbb {R} ^{n}} satisfying the cone condition. Let m p = n {\displaystyle mp=n} and p > 1 {\displaystyle p>1} . Set
Then there exists the embedding
where
The space
is an example of an Orlicz space.