Time-translation symmetry

Time-translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time-translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy.[1] In mathematics, the set of all time translations on a given system form a Lie group.

There are many symmetries in nature besides time translation, such as spatial translation or rotational symmetries. These symmetries can be broken and explain diverse phenomena such as crystals, superconductivity, and the Higgs mechanism.[2] However, it was thought until very recently that time-translation symmetry could not be broken.[3] Time crystals, a state of matter first observed in 2017, break time-translation symmetry.[4]

Overview

Symmetries are of prime importance in physics and are closely related to the hypothesis that certain physical quantities are only relative and unobservable.[5] Symmetries apply to the equations that govern the physical laws (e.g. to a Hamiltonian or Lagrangian) rather than the initial conditions, values or magnitudes of the equations themselves and state that the laws remain unchanged under a transformation.[1] If a symmetry is preserved under a transformation it is said to be invariant. Symmetries in nature lead directly to conservation laws, something which is precisely formulated by Noether's theorem.[6]

Symmetries in physics[5]
Symmetry Transformation Unobservable Conservation law
Space-translation absolute position in space momentum
Time-translation absolute time energy
Rotation absolute direction in space angular momentum
Space inversion absolute left or right parity
Time-reversal absolute sign of time Kramers degeneracy
Sign reversion of charge absolute sign of electric charge charge conjugation
Particle substitution distinguishability of identical particles Bose or Fermi statistics
Gauge transformation relative phase between different normal states particle number

Newtonian mechanics

To formally describe time-translation symmetry we say the equations, or laws, that describe a system at times and are the same for any value of and .

For example, considering Newton's equation:

One finds for its solutions the combination:

does not depend on the variable . Of course, this quantity describes the total energy whose conservation is due to the time-translation invariance of the equation of motion. By studying the composition of symmetry transformations, e.g. of geometric objects, one reaches the conclusion that they form a group and, more specifically, a Lie transformation group if one considers continuous, finite symmetry transformations. Different symmetries form different groups with different geometries. Time independent Hamiltonian systems form a group of time translations that is described by the non-compact, abelian, Lie group . TTS is therefore a dynamical or Hamiltonian dependent symmetry rather than a kinematical symmetry which would be the same for the entire set of Hamiltonians at issue. Other examples can be seen in the study of time evolution equations of classical and quantum physics.

Many differential equations describing time evolution equations are expressions of invariants associated to some Lie group and the theory of these groups provides a unifying viewpoint for the study of all special functions and all their properties. In fact, Sophus Lie invented the theory of Lie groups when studying the symmetries of differential equations. The integration of a (partial) differential equation by the method of separation of variables or by Lie algebraic methods is intimately connected with the existence of symmetries. For example, the exact solubility of the Schrödinger equation in quantum mechanics can be traced back to the underlying invariances. In the latter case, the investigation of symmetries allows for an interpretation of the degeneracies, where different configurations to have the same energy, which generally occur in the energy spectrum of quantum systems. Continuous symmetries in physics are often formulated in terms of infinitesimal rather than finite transformations, i.e. one considers the Lie algebra rather than the Lie group of transformations

Quantum mechanics

The invariance of a Hamiltonian of an isolated system under time translation implies its energy does not change with the passage of time. Conservation of energy implies, according to the Heisenberg equations of motion, that .

or:

Where is the time-translation operator which implies invariance of the Hamiltonian under the time-translation operation and leads to the conservation of energy.

Nonlinear systems

In many nonlinear field theories like general relativity or Yang–Mills theories, the basic field equations are highly nonlinear and exact solutions are only known for ‘sufficiently symmetric’ distributions of matter (e.g. rotationally or axially symmetric configurations). Time-translation symmetry is guaranteed only in spacetimes where the metric is static: that is, where there is a coordinate system in which the metric coefficients contain no time variable. Many general relativity systems are not static in any frame of reference so no conserved energy can be defined.

Time-translation symmetry breaking (TTSB)

Time crystals, a state of matter first observed in 2017, break discrete time-translation symmetry.[4]

See also

References

  1. ^ a b Wilczek, Frank (16 July 2015). "3". A Beautiful Question: Finding Nature's Deep Design. Penguin Books Limited. ISBN 978-1-84614-702-9.
  2. ^ Richerme, Phil (18 January 2017). "Viewpoint: How to Create a Time Crystal". Physics. 10. APS Physics: 5. Bibcode:2017PhyOJ..10....5R. doi:10.1103/Physics.10.5. Archived from the original on 2 February 2017.
  3. ^ Else, Dominic V.; Bauer, Bela; Nayak, Chetan (2016). "Floquet Time Crystals". Physical Review Letters. 117 (9): 090402. arXiv:1603.08001. Bibcode:2016PhRvL.117i0402E. doi:10.1103/PhysRevLett.117.090402. ISSN 0031-9007. PMID 27610834. S2CID 1652633.
  4. ^ a b Gibney, Elizabeth (2017). "The quest to crystallize time". Nature. 543 (7644): 164–166. Bibcode:2017Natur.543..164G. doi:10.1038/543164a. ISSN 0028-0836. PMID 28277535. S2CID 4460265.
  5. ^ a b Feng, Duan; Jin, Guojun (2005). Introduction to Condensed Matter Physics. Singapore: World Scientific. p. 18. ISBN 978-981-238-711-0.
  6. ^ Cao, Tian Yu (25 March 2004). Conceptual Foundations of Quantum Field Theory. Cambridge: Cambridge University Press. ISBN 978-0-521-60272-3.

Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

Сельское поселениеМалохомутёрское сельское поселение Флаг Страна Россия Входит в Барышский район Адм. центр Малая Хомутерь Глава поселения Тихонов Евгений Петрович История и география Дата образования 29 мая 2005 года Часовой пояс UTC+3:00[2] и UTC+4:00[2] Население Н...

 

 

ميكلوس تمسفاري   معلومات شخصية الميلاد 27 يوليو 1938 (85 سنة)  ميشكولتس  الجنسية المجر  الفرق التي دربها سنوات فريق 1981-1985 أويبست[1] 1985-1988 نادي تاتابانيا  [لغات أخرى]‏ 1988-1990 دبرتسني 1990-1993 المالديف 1993-1996 في بي 1999-2000 ديوسجوري 2000-2001 تيرانا تعديل مصدري - تعديل   ميك

Cet article est une ébauche concernant un élément culturel et les États-Unis. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (avril 2020). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci...

 

 

Понеділок — день звичайний Жанр кіноповістьРежисер Валеріан КвачадзеСценарист Олександр ЧхаїдзеУ головних ролях Тенгіз АрчвадзеМарина ДжанашіяОператор Ніколос СухішвіліКомпозитор Отар ТактакішвіліХудожник Джемал МірзашвіліКінокомпанія Грузія-фільмТривалість 63 х

 

 

Memento Mori Memento Mori (álbum de Depeche Mode) Álbum de estúdio de Depeche Mode Lançamento 24 de março de 2023 (2023-03-24) Gravação 2019–22 Idioma(s) inglês Gravadora(s) Columbia Mute Produção James Ford Marta Salogni Cronologia de Depeche Mode Spirit(2017) Singles de Memento Mori Ghosts AgainLançamento: 9 de fevereiro de 2023 Wagging TongueLançamento: 7 de julho de 2023 Speak to MeLançamento: 11 de agosto de 2023 My Favourite StrangerLançamento: 29 de setembro de...

Tratado de ManaguaTipo de tratado BilateralFirmado 28 de enero de 1860Expiración 19 de abril de 1905Partes Reino Unido NicaraguaIdiomas InglésEspañol[editar datos en Wikidata] Mapa de la 'Reserva Mosquito' El Tratado de Managua, también conocido como el Tratado Zeledón-Wyke, fue un acuerdo internacional firmado en 1860 entre el Reino Unido y el Estado de Nicaragua, por el que el Reino Unido reconocía la soberanía de Nicaragua sobre parte del Reino de Mosquitia, pero reservó,...

 

 

English cricketer For the Queensland politician, see Tom Moores (politician). Tom MooresMoores in 2021Personal informationFull nameThomas James MooresBorn (1996-09-04) 4 September 1996 (age 27)Brighton, East Sussex, EnglandBattingLeft-handedRoleWicket-keeperRelationsPeter Moores (father)Domestic team information YearsTeam2014–presentNottinghamshire (squad no. 23)2016→ Lancashire (on loan)2020Jaffna Stallions2021Kandy Warriors2021Trent Rockets2023–presentSylhet Strike...

 

 

Duke of Athens For the baron of Veligosti, see William de la Roche (lord of Veligosti). Coat of arms of William William I de la Roche (died 1287) succeeded his brother, John I, as Duke of Athens in 1280. He was the son of Guy I de la Roche. William reversed the territorial losses of his brother's reign, extending his control over Lamia and Gardiki. He married Helena Angelina Komnene, daughter of John I Doukas, ruler of Thessaly, securing a military alliance with him.[1][2] In ...

Germanicus Julius Caesar (24 Mei 16 SM atau 15 SM–10 Oktober 19) adalah anggota dari dinasti Julio-Claudian Kekaisaran Romawi awal. Pada saat lahir, ia dinamai Nero Claudius Drusus oleh ayahnya dan Tiberius Claudius Nero oleh pamannya, dan menerima agnomen Germanicus. Ia adalah ayah dari kaisar Romawi Caligula, saudara kandung kaisar Claudius, dan kakek dari kaisar Nero. Pranala luar Wikimedia Commons memiliki media mengenai Germanicus. (Soprintendenza per i Beni Archeologici dell'Umbria) T...

 

 

2003 Bollywood silent short film This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Bypass – news · newspapers · books · scholar · JSTOR (October 2016) (L...

 

 

Tahu busukAsalNegara asalRepublik Rakyat Tiongkok dan Taiwan Keahlian memasakmasakan Tiongkok dan Masakan Taiwan RincianJenisfermented bean curd (en) Bahan utamatahu lbs Tahu busuk Warung tahu busuk Tahu busuk (Hanzi: 臭豆腐, hanyu pinyin: chou doufu) adalah salah satu penganan tradisional Tionghoa. Tahu busuk adalah sejenis tahu yang difermentasikan lebih lanjut sehingga menjadi berbau tidak enak. Penyajiannya bermacam-macam, dapat digoreng, dikukus, direbus atau dipanggang. Yang unik, se...

1978 studio album by Fabulous PoodlesMirror StarsStudio album by Fabulous PoodlesReleasedDecember 1978 (1978-12)RecordedRamport Studios, London, 1977Basing Street, London, 1978GenreRockLabelEpicProducerJohn Entwistle, Muff Winwood, Fabulous Poodles, Howard KilgourFabulous Poodles chronology Mirror Stars(1978) Think Pink(1979) Professional ratingsReview scoresSourceRatingDave Marsh[1]Christgau's Record GuideC[2]Rolling StoneFavourable[3] Mirror Stars i...

 

 

Udhagamandalam Central Bus StandBus stationGeneral informationLocationKathadimattam, OotyTamil NaduIndiaCoordinates11°24′13″N 76°41′47″E / 11.4035°N 76.6963°E / 11.4035; 76.6963Elevation2,210 metres (7,250 ft)Owned byGovernment of Tamil NaduOperated byTNSTC CoimbatorePlatforms10ConstructionParkingYesBicycle facilitiesYesOther informationStation codeOTYFare zoneTamil NaduHistoryClosedN/A Ooty Bus Stand, also known as Udhagamandalam Central Bus Stand is ...

 

 

2006 single by Belle and Sebastian Funny Little FrogSingle by Belle & Sebastianfrom the album The Life Pursuit B-side Meat and Potatoes I Took a Long Hard Look The Eighth Station of the Cross Kebab House Released16 January 2006 (2006-01-16)StudioThe Sound Factory (Los Angeles)Genre Northern soul[1] glam rock[1] Length3:08LabelRough TradeSongwriter(s) Richard Colburn Mick Cooke Chris Geddes Stevie Jackson Bobby Kildea Sarah Martin Stuart Murdoch Producer(s)To...

Japanese manga series Not to be confused with Dororo. DorohedoroFirst tankōbon volume cover, featuring CaimanドロヘドロGenreAction[1][2]Dark fantasy[3][4]Science fantasy[5][6] MangaWritten byQ HayashidaPublished byShogakukanEnglish publisherNA: Viz MediaImprintIkki ComixMagazineMonthly Ikki (November 30, 2000–September 25, 2014)Hibana (March 6, 2015–August 7, 2017)Monthly Shōnen Sunday (November 10, 2017–September 12, 2018...

 

 

Judgments of the Constitutional Courtof South Africa 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 vte The table below lists the judgments of the Constitutional Court of South Africa delivered in 2013. The members of the court at the start of 2013 were Chief Justice Mogoeng Mogoeng, Deputy Chief Justice Dikgang Moseneke, and judges Edwin Cameron, Johan Froneman, Chris Jafta, Sisi Khampepe, Bess Nkabi...

 

 

American painter E. Charlton FortuneMonterey Bay, 1916, 30 x 40 inches, Oakland Museum of CaliforniaBornEuphemia Charlton Fortune(1885-01-15)January 15, 1885Sausalito, CaliforniaDied(1969-05-15)May 15, 1969Carmel, CaliforniaNationalityAmericanKnown foroil paintingMovementAmerican Impressionism Euphemia Charlton Fortune (1885–1969) was an American Impressionist artist from California. She was trained in Europe, New York and San Francisco. She painted many portraits as well as landscape ...

American professional wrestler (1944 – 1978) This article is about the professional wrestler. For the professional wrestling stable, see The Moondogs (professional wrestling). Lonnie MayneBirth nameRonald Doyle MayneBorn(1944-09-12)September 12, 1944[1]Fairfax, California, United States[1]DiedAugust 14, 1978(1978-08-14) (aged 33)[1]San Bernardino, CaliforniaProfessional wrestling careerRing name(s)Moondog Mayne[1]The Blond Bomber[1]The One Man Ga...

 

 

Football clubAşgabat FKFull nameAşgabat Futbol KlubyNickname(s)ŞäherlilerFounded2006; 17 years ago (2006)GroundNisa Stadium,Ashgabat, TurkmenistanCapacity1,500ChairmanÇaryýarguly SeýdiýewManagerDöwletmyrat Annaýew[1][2]LeagueÝokary Liga2021Ýokary League, 6th of 8 Ashgabat Futbol Kluby is a Turkmen football club based in Ashgabat. They play in the top division of Turkmenistan football, Ýokary Liga. Their home stadium is Nisa Stadium.[3] Th...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!