Adjoint representation

In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .

For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields.

Definition

Let G be a Lie group, and let

be the mapping g ↦ Ψg, with Aut(G) the automorphism group of G and Ψg: GG given by the inner automorphism (conjugation)

This Ψ is a Lie group homomorphism.

For each g in G, define Adg to be the derivative of Ψg at the origin:

where d is the differential and is the tangent space at the origin e (e being the identity element of the group G). Since is a Lie group automorphism, Adg is a Lie algebra automorphism; i.e., an invertible linear transformation of to itself that preserves the Lie bracket. Moreover, since is a group homomorphism, too is a group homomorphism.[1] Hence, the map

is a group representation called the adjoint representation of G.

If G is an immersed Lie subgroup of the general linear group (called immersely linear Lie group), then the Lie algebra consists of matrices and the exponential map is the matrix exponential for matrices X with small operator norms. We will compute the derivative of at . For g in G and small X in , the curve has derivative at t = 0, one then gets:

where on the right we have the products of matrices. If is a closed subgroup (that is, G is a matrix Lie group), then this formula is valid for all g in G and all X in .

Succinctly, an adjoint representation is an isotropy representation associated to the conjugation action of G around the identity element of G.

Derivative of Ad

One may always pass from a representation of a Lie group G to a representation of its Lie algebra by taking the derivative at the identity.

Taking the derivative of the adjoint map

at the identity element gives the adjoint representation of the Lie algebra of G:

where is the Lie algebra of which may be identified with the derivation algebra of . One can show that

for all , where the right hand side is given (induced) by the Lie bracket of vector fields. Indeed,[2] recall that, viewing as the Lie algebra of left-invariant vector fields on G, the bracket on is given as:[3] for left-invariant vector fields X, Y,

where denotes the flow generated by X. As it turns out, , roughly because both sides satisfy the same ODE defining the flow. That is, where denotes the right multiplication by . On the other hand, since , by the chain rule,

as Y is left-invariant. Hence,

,

which is what was needed to show.

Thus, coincides with the same one defined in § Adjoint representation of a Lie algebra below. Ad and ad are related through the exponential map: Specifically, Adexp(x) = exp(adx) for all x in the Lie algebra.[4] It is a consequence of the general result relating Lie group and Lie algebra homomorphisms via the exponential map.[5]

If G is an immersely linear Lie group, then the above computation simplifies: indeed, as noted early, and thus with ,

.

Taking the derivative of this at , we have:

.

The general case can also be deduced from the linear case: indeed, let be an immersely linear Lie group having the same Lie algebra as that of G. Then the derivative of Ad at the identity element for G and that for G' coincide; hence, without loss of generality, G can be assumed to be G'.

The upper-case/lower-case notation is used extensively in the literature. Thus, for example, a vector x in the algebra generates a vector field X in the group G. Similarly, the adjoint map adxy = [x,y] of vectors in is homomorphic[clarification needed] to the Lie derivative LXY = [X,Y] of vector fields on the group G considered as a manifold.

Further see the derivative of the exponential map.

Adjoint representation of a Lie algebra

Let be a Lie algebra over some field. Given an element x of a Lie algebra , one defines the adjoint action of x on as the map

for all y in . It is called the adjoint endomorphism or adjoint action. ( is also often denoted as .) Since a bracket is bilinear, this determines the linear mapping

given by x ↦ adx. Within End, the bracket is, by definition, given by the commutator of the two operators:

where denotes composition of linear maps. Using the above definition of the bracket, the Jacobi identity

takes the form

where x, y, and z are arbitrary elements of .

This last identity says that ad is a Lie algebra homomorphism; i.e., a linear mapping that takes brackets to brackets. Hence, ad is a representation of a Lie algebra and is called the adjoint representation of the algebra .

If is finite-dimensional and a basis for it is chosen, then is the Lie algebra of square matrices and the composition corresponds to matrix multiplication.

In a more module-theoretic language, the construction says that is a module over itself.

The kernel of ad is the center of (that's just rephrasing the definition). On the other hand, for each element z in , the linear mapping obeys the Leibniz' law:

for all x and y in the algebra (the restatement of the Jacobi identity). That is to say, adz is a derivation and the image of under ad is a subalgebra of Der, the space of all derivations of .

When is the Lie algebra of a Lie group G, ad is the differential of Ad at the identity element of G.

There is the following formula similar to the Leibniz formula: for scalars and Lie algebra elements ,

Structure constants

The explicit matrix elements of the adjoint representation are given by the structure constants of the algebra. That is, let {ei} be a set of basis vectors for the algebra, with

Then the matrix elements for adei are given by

Thus, for example, the adjoint representation of su(2) is the defining representation of so(3).

Examples

  • If G is abelian of dimension n, the adjoint representation of G is the trivial n-dimensional representation.
  • If G is a matrix Lie group (i.e. a closed subgroup of ), then its Lie algebra is an algebra of n×n matrices with the commutator for a Lie bracket (i.e. a subalgebra of ). In this case, the adjoint map is given by Adg(x) = gxg−1.
  • If G is SL(2, R) (real 2×2 matrices with determinant 1), the Lie algebra of G consists of real 2×2 matrices with trace 0. The representation is equivalent to that given by the action of G by linear substitution on the space of binary (i.e., 2 variable) quadratic forms.

Properties

The following table summarizes the properties of the various maps mentioned in the definition

Lie group homomorphism:
Lie group automorphism:
Lie group homomorphism:
Lie algebra automorphism:
  • is linear
Lie algebra homomorphism:
  • is linear
Lie algebra derivation:
  • is linear

The image of G under the adjoint representation is denoted by Ad(G). If G is connected, the kernel of the adjoint representation coincides with the kernel of Ψ which is just the center of G. Therefore, the adjoint representation of a connected Lie group G is faithful if and only if G is centerless. More generally, if G is not connected, then the kernel of the adjoint map is the centralizer of the identity component G0 of G. By the first isomorphism theorem we have

Given a finite-dimensional real Lie algebra , by Lie's third theorem, there is a connected Lie group whose Lie algebra is the image of the adjoint representation of (i.e., .) It is called the adjoint group of .

Now, if is the Lie algebra of a connected Lie group G, then is the image of the adjoint representation of G: .

Roots of a semisimple Lie group

If G is semisimple, the non-zero weights of the adjoint representation form a root system.[6] (In general, one needs to pass to the complexification of the Lie algebra before proceeding.) To see how this works, consider the case G = SL(n, R). We can take the group of diagonal matrices diag(t1, ..., tn) as our maximal torus T. Conjugation by an element of T sends

Thus, T acts trivially on the diagonal part of the Lie algebra of G and with eigenvectors titj−1 on the various off-diagonal entries. The roots of G are the weights diag(t1, ..., tn) → titj−1. This accounts for the standard description of the root system of G = SLn(R) as the set of vectors of the form eiej.

Example SL(2, R)

When computing the root system for one of the simplest cases of Lie Groups, the group SL(2, R) of two dimensional matrices with determinant 1 consists of the set of matrices of the form:

with a, b, c, d real and ad − bc = 1.

A maximal compact connected abelian Lie subgroup, or maximal torus T, is given by the subset of all matrices of the form

with . The Lie algebra of the maximal torus is the Cartan subalgebra consisting of the matrices

If we conjugate an element of SL(2, R) by an element of the maximal torus we obtain

The matrices

are then 'eigenvectors' of the conjugation operation with eigenvalues . The function Λ which gives is a multiplicative character, or homomorphism from the group's torus to the underlying field R. The function λ giving θ is a weight of the Lie Algebra with weight space given by the span of the matrices.

It is satisfying to show the multiplicativity of the character and the linearity of the weight. It can further be proved that the differential of Λ can be used to create a weight. It is also educational to consider the case of SL(3, R).

Variants and analogues

The adjoint representation can also be defined for algebraic groups over any field.[clarification needed]

The co-adjoint representation is the contragredient representation of the adjoint representation. Alexandre Kirillov observed that the orbit of any vector in a co-adjoint representation is a symplectic manifold. According to the philosophy in representation theory known as the orbit method (see also the Kirillov character formula), the irreducible representations of a Lie group G should be indexed in some way by its co-adjoint orbits. This relationship is closest in the case of nilpotent Lie groups.

See also

  • Adjoint bundle – Lie algebra bundle associated to any principal bundle by the adjoint representation

Notes

  1. ^ Indeed, by the chain rule,
  2. ^ Kobayashi & Nomizu 1996, page 41
  3. ^ Kobayashi & Nomizu 1996, Proposition 1.9.
  4. ^ Hall 2015 Proposition 3.35
  5. ^ Hall 2015 Theorem 3.28
  6. ^ Hall 2015 Section 7.3

References

  • Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
  • Kobayashi, Shoshichi; Nomizu, Katsumi (1996). Foundations of Differential Geometry, Vol. 1 (New ed.). Wiley-Interscience. ISBN 978-0-471-15733-5.
  • Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666.

Read other articles:

Disambiguazione – Se stai cercando altri significati, vedi Omega (disambigua). Lettere classiche Αα Alfa Νν Ni Ββ Beta Ξξ Xi Γγ Gamma Οο Omicron Δδ Delta Ππ Pi Εε Epsilon Ρρ Rho Ζζ Zeta Σσς Sigma Ηη Eta Ττ Tau Θθ Theta Υυ Ypsilon Ιι Iota Φφ Phi Κκ Kappa Χχ Chi Λλ Lambda Ψψ Psi Μμ Mi Ωω Omega Lettere numerali Ϛϛ Stigma Ϡϡ Sampi Ϟϟ Qoppa Lettere arcaiche Ϝϝ Digamma Ϻϻ San Ͱͱ Heta Altri caratteri Ϳϳ Jod Ϸϸ Sho Segni diacritici Om...

 

Солтус Павло Станіславович Народився 19 лютого 1962(1962-02-19) (61 рік)місто Горлівка, Донецька областьГромадянство  СРСР →  УкраїнаДіяльність політикЧленство Верховна Рада України VI скликання, Верховна Рада України V скликання і Верховна Рада України IV скликанняПос

 

Estádio de Copacabana of Arena Copacabana Estádio de Copacabana tijdens het beachvolleybaltoernooi van de Olympische Spelen Rio 2016 Het Estádio de Copacabana, ook Arena Copacabana of Arena de Vôlei de Praia, is een tijdelijk opgetrokken stadion dat voor de Olympische Zomerspelen in Rio de Janeiro wordt gebruikt. Er is plaats voor 12.000 toeschouwers.[1] Het ligt bij EHBO-post en uitkijktoren 2 van het strand van Copacabana, in Zona Sul, het zuiden van de stad, aan de Atlantische ...

 MR2 Stasiun Monorel Tun SambanthanStasiun Monorel Rute KL Sentral-TitiwangsaLokasiSelatan simpang Jalan Tun Sambanthan 4 - Jalan Tebing, Brickfields, Kuala Lumpur, Malaysia.Koordinat3°7′53″N 101°41′26″E / 3.13139°N 101.69056°E / 3.13139; 101.69056PemilikKL Infrastructure Group Limited (KL Infra)JalurKL Monorail (2003 – kini)Jumlah peron2 peron tepiJumlah jalur2KonstruksiParkirTiadaSejarahDibuka31 Agustus 2003Operasi layanan Stasiun sebelumnya &...

 

Kastelbell-Tschars (ital.: Castelbello-Ciardes) Wappen Wappen von Kastelbell-Tschars Staat: Italien Region: Trentino-Südtirol Provinz: Bozen – Südtirol Bezirksgemeinschaft: Vinschgau Einwohner:(VZ 2011/31.12.2022) 2.378/2.309 Sprachgruppen:(laut Volkszählung 2011) 98,72 % deutsch1,28 % italienisch0,00 % ladinisch Koordinaten 46° 38′ N, 10° 54′ O46.63333333333310.9587Koordinaten: 46° 38′ N, 10° 54′ O Meereshöhe: 556–291...

 

Juninho Fonseca Informações pessoais Nome completo Alcides Fonseca Júnior Data de nasc. 29 de agosto de 1958 (65 anos) Local de nasc. Olímpia, São Paulo, Brasil Nacionalidade brasileiro Altura 1,84 m Informações profissionais Clube atual Sem clube Posição treinador(ex-zagueiro) Clubes profissionais Anos Clubes Jogos (golos) 1974–19831983–19861986198619871988198819891989199019911991–1992 Ponte Preta Corinthians Juventus-SP Vasco da Gama Cruzeiro XV de Piracicaba Atlét...

Jakarta UndercoverSutradara Lance Produser Erwin Arnada Stepen Walangitang Teuku Sultan Azwar Abby Ernest Chand Parwez Servia Ditulis oleh Joko Anwar PemeranLuna MayaFachry AlbarLukman SardiChristian SugionoAdry Valery WensVerdi SolaimanKensiro ArashiTutie KiranaFauzi BaadilaMario LawalataHanung BramantyoSita NursantiPenata musikAndi AyunirSinematograferYadi SugandiPenyuntingCesa David LuckmansyahPerusahaanproduksiVelvet Silver Cinema Rexinema Multimedia PratamaDistributorKharisma Starv...

 

Dutch government-in-exile (1941–1945) Second Gerbrandy cabinet Third London cabinet39th Cabinet of the NetherlandsMeeting of the Second Gerbrandy cabinet in late 1944Date formed27 July 1941 (1941-07-27)Date dissolved23 February 1945 (1945-02-23) (Demissionary from 21 January 1945 (1945-01-21))People and organisationsHead of stateQueen WilhelminaHead of governmentPieter Sjoerds GerbrandyDeputy head of governmentHendrik van Boeijen (De Facto)No. of...

 

2015 Labour Party leadership election ← 2010 14 August – 12 September 2015 (2015-08-14 – 2015-09-12) 2016 → Turnout422,871 (76.3%) 4.6 pp   Candidate Jeremy Corbyn Andy Burnham Popular vote 251,417 80,462 Percentage 59.5% 19.0%   Candidate Yvette Cooper Liz Kendall Popular vote 71,928 18,857 Percentage 17.0% 4.5% Leader before election Harriet Harman (interim) Elected Leader Jeremy Corbyn The 2015 Labour Party leaders...

Nueva CondominaInformasi stadionNama lengkapEstadio Nueva CondominaPemilikAyuntamiento de MurciaOperatorAyuntamiento de MurciaLokasiLokasiMurcia, SpanyolKoordinat38°02′32″N 1°08′41″W / 38.04222°N 1.14472°W / 38.04222; -1.14472Koordinat: 38°02′32″N 1°08′41″W / 38.04222°N 1.14472°W / 38.04222; -1.14472KonstruksiDibukaOctober 11, 2006ArsitekJaime López AmorData teknisKapasitas31,179[1]Ukuran lapangan105 meter (115&#...

 

2000 film by Laís Bodanzky BrainstormTheatrical release posterPortugueseBicho de Sete Cabeças Directed byLaís BodanzkyScreenplay byLuiz BolognesiBased onCanto dos Malditos1993 novelby Austregésilo Carrano BuenoProduced by Maria Ionescu Sara Silveira Caio Gullane Fabiano Gullane Luiz Bolognesi Marco Muller Starring Rodrigo Santoro Othon Bastos Cássia Kiss CinematographyHugo KovenskyEdited by Jacopo Quadri Letizia Caudullo Music byAndré AbujamraProductioncompanies Buriti Filmes Dezenove S...

 

1989 Portuguese filmO Sangue(Blood)DVD coverDirected byPedro CostaWritten byPedro CostaProduced byVítor GonçalvesStarringPedro HestnesNuno FerreiraInes de MedeirosCinematographyMartin SchaferEdited byManuela ViegasRelease date 1989 (1989) Running time94 minutesCountryPortugalLanguagePortuguese O Sangue ([ɔ ˈsɐ̃ɡɨ], Blood) is the Portuguese filmmaker Pedro Costa's first feature film. Released in 1989, in black and white, the film depicts the impoverished life of two brothe...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shahid Shiroudi Stadium – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this template message) 35°42′37″N 51°25′39″E / 35.71028°N 51.42750°E / 35.71028; 51.42750 Shahid Shiroudi Sta...

 

Questa voce o sezione sull'argomento nobili danesi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Regno di Danimarca e NorvegiaCasato degli Oldenburg Cristiano I Figli Giovanni Margherita Federico Giovanni Figli Cristiano Elisabetta Cristiano II Figli Dorotea Cristina Federico I Figli Cristiano Dorotea Giovanni Elisabetta Adolfo Dorotea Federico Cristian...

 

Protesta en Argentina respecto a los responsables por la Tragedia de Cromañón. Impunidad es una excepción de castigo o escape de la sanción que implica una falta o delito. En el derecho internacional de los derechos humanos, se refiere a la imposibilidad de llevar a los violadores de los derechos humanos ante la justicia y, como tal, constituye en sí misma una negación a sus víctimas de su derecho a ser reparadas. La impunidad es especialmente común en países que carecen de una tradi...

Study of sexuality focused on women The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (December 2022) (Learn how and when to remove this template message) Part of a series onFeminism History Feminist history History of feminism Women's history American British Canadian German Waves First Second Third Fourth Timelines Women's suffrage Muslim countries US Other women's rights Women'...

 

War fought between Sudan and South Sudan Heglig CrisisDate26 March – 26 September 2012(6 months)LocationAlong the entire Sudan–South Sudan border, although the main fighting took place at HegligResult Sudanese victory[2] Agreement on borders and natural resources signed on 26 September[3]Territorialchanges South Sudanese withdrawal from Heglig[4]Belligerents  South Sudan JEM[1] SPLM-N[1]  SudanCommanders and leaders Salva Kiir(Preside...

 

Laut TasmanLokasiPeta Lokasi Laut TasmanLetakSamudra Pasifik Barat DayaKoordinat40°S 160°E / 40°S 160°E / -40; 160Jenis perairanLautTerletak di negara Australia,  Selandia BaruPanjang maksimal2.800 km (1.700 mi)Lebar maksimal2.200 km (1.400 mi)Area permukaan2.300.000 km2 (890.000 sq mi)KepulauanPulau Lord Howe,  Pulau NorfolkUndakanLord Howe RisePermukimanNewcastle, Sydney, Wollongong, Hobart (Australia) Auckland, W...

  此条目的主題是一种氨基酸。关于学名同样为Glycine的蝶形花科植物,請見「大豆属」。 甘氨酸 Zwitterion of glycine IUPAC名Glycine氨基乙酸 系统名2-胺基乙酸 别名 Aminoacetic acid Glycocoll 缩写 Gly, G 识别 缩写 Gly, G CAS号 56-40-6  Y PubChem 750 ChemSpider 730 SMILES   C(C(=O)O)N InChI   1/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5) InChIKey DHMQDGOQFOQNFH-UHFFFAOYAW ChEBI 15428 DrugBank DB00145 KEGG D00011 IUPHAR配体 727...

 

Cesáreo Fernández Losada Información personalNacimiento 26 de junio de 1831Celanova (España) Fallecimiento 11 de abril de 1911Barcelona (España) Nacionalidad EspañolaInformación profesionalOcupación Médico, militar y político Empleador Revista de Sanidad Militar Española y Extranjera Rango militar General Miembro de Real Sociedad Española de Historia Natural [editar datos en Wikidata] Cesáreo Fernández Losada (Celanova, 26 de junio de 1831-Barcelona, 11 de abril de 191...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!