Telegrapher's equations

The telegrapher's equations (or just telegraph equations) are a set of two coupled, linear equations that predict the voltage and current distributions on a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory.[1] The equations and their solutions are applicable from 0 Hz (i.e. direct current) to frequencies at which the transmission line structure can support higher order non-TEM modes.[2]: 282–286  The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time. The resulting time domain equations are partial differential equations of both time and distance. In the frequency domain the independent variables are distance and either frequency, , or complex frequency, . The frequency domain variables can be taken as the Laplace transform or Fourier transform of the time domain variables or they can be taken to be phasors. The resulting frequency domain equations are ordinary differential equations of distance. An advantage of the frequency domain approach is that differential operators in the time domain become algebraic operations in frequency domain.

The equations come from Oliver Heaviside who developed the transmission line model starting with an August 1876 paper, On the Extra Current.[3] The model demonstrates that the electromagnetic waves can be reflected on the wire, and that wave patterns can form along the line. Originally developed to describe telegraph wires, the theory can also be applied to radio frequency conductors, audio frequency (such as telephone lines), low frequency (such as power lines), and pulses of direct current.

Distributed components

Schematic representation of the elementary components of a transmission line

The telegrapher's equations, like all other equations describing electrical phenomena, result from Maxwell's equations. In a more practical approach, one assumes that the conductors are composed of an infinite series of two-port elementary components, each representing an infinitesimally short segment of the transmission line:

  • The distributed resistance of the conductors is represented by a series resistor (expressed in ohms per unit length). In practical conductors, at higher frequencies, increases approximately proportional to the square root of frequency due to the skin effect.
  • The distributed inductance (due to the magnetic field around the wires, self-inductance, etc.) is represented by a series inductor (henries per unit length).
  • The capacitance between the two conductors is represented by a shunt capacitor (farads per unit length).
  • The conductance of the dielectric material separating the two conductors is represented by a shunt resistor between the signal wire and the return wire (siemens per unit length). This resistor in the model has a resistance of . accounts for both bulk conductivity of the dielectric and dielectric loss. If the dielectric is an ideal vacuum, then .

The model consists of an infinite series of the infinitesimal elements shown in the figure, and that the values of the components are specified per unit length so the picture of the component can be misleading. An alternative notation is to use , , , and to emphasize that the values are derivatives with respect to length, and that the units of measure combine correctly. These quantities can also be known as the primary line constants to distinguish from the secondary line constants derived from them, these being the characteristic impedance, the propagation constant, attenuation constant and phase constant. All these constants are constant with respect to time, voltage and current. They may be non-constant functions of frequency.

Role of different components

Schematic showing a wave flowing rightward down a lossless transmission line. Black dots represent electrons, and the arrows show the electric field.

The role of the different components can be visualized based on the animation at right.

Inductance L
The inductance couples current to energy stored in the magnetic field. It makes it look like the current has inertia – i.e. with a large inductance, it is difficult to increase or decrease the current flow at any given point. Large inductance L makes the wave move more slowly, just as waves travel more slowly down a heavy rope than a light string. Large inductance also increases the line's surge impedance (more voltage needed to push the same AC current through the line).
Capacitance C
The capacitance couples voltage to the energy stored in the electric field. It controls how much the bunched-up electrons within each conductor repel, attract, or divert the electrons in the other conductor. By deflecting some of these bunched up electrons, the speed of the wave and its strength (voltage) are both reduced. With a larger capacitance, C, there is less repulsion, because the other line (which always has the opposite charge) partly cancels out these repulsive forces within each conductor. Larger capacitance equals weaker restoring forces, making the wave move slightly slower, and also gives the transmission line a lower surge impedance (less voltage needed to push the same AC current through the line).
Resistance R
Resistance corresponds to resistance interior to the two lines, combined. That resistance R couples current to ohmic losses that drop a little of the voltage along the line as heat deposited into the conductor, leaving the current unchanged. Generally, the line resistance is very low, compared to inductive reactance ωL at radio frequencies, and for simplicity is treated as if it were zero, with any voltage dissipation or wire heating accounted for as corrections to the "lossless line" calculation, or just ignored.
Conductance G
Conductance between the lines represents how well current can "leak" from one line to the other. Conductance couples voltage to dielectric loss deposited as heat into whatever serves as insulation between the two conductors. G reduces propagating current by shunting it between the conductors. Generally, wire insulation (including air) is quite good, and the conductance is almost nothing compared to the capacitive susceptance ωC, and for simplicity is treated as if it were zero.

All four parameters L, C, R, and G depend on the material used to build the cable or feedline. All four change with frequency: R, and G tend to increase for higher frequencies, and L and C tend to drop as the frequency goes up. The figure at right shows a lossless transmission line, where both R and G are zero, which is the simplest and by far most common form of the telegrapher's equations used, but slightly unrealistic (especially regarding R).

Values of primary parameters for telephone cable

Representative parameter data for 24-gauge telephone polyethylene insulated cable (PIC) at 70 °F (294 K)

Frequency R L G C
Hz Ωkm Ω1000 ft μHkm μH1000 ft μSkm μS1000 ft nFkm nF1000 ft
1 Hz 172.24 52.50 612.9 186.8 0.000 0.000 51.57 15.72
1 kHz 172.28 52.51 612.5 186.7 0.072 0.022 51.57 15.72
10 kHz 172.70 52.64 609.9 185.9 0.531 0.162 51.57 15.72
100 kHz 191.63 58.41 580.7 177.0 3.327 1.197 51.57 15.72
1 MHz 463.59 141.30 506.2 154.3 29.111 8.873 51.57 15.72
2 MHz 643.14 196.03 486.2 148.2 53.205 16.217 51.57 15.72
5 MHz 999.41 304.62 467.5 142.5 118.074 35.989 51.57 15.72

This data is from Reeve (1995).[4] The variation of and is mainly due to skin effect and proximity effect. The constancy of the capacitance is a consequence of intentional design.

The variation of G can be inferred from Terman: "The power factor ... tends to be independent of frequency, since the fraction of energy lost during each cycle ... is substantially independent of the number of cycles per second over wide frequency ranges."[5] A function of the form with close to 1.0 would fit Terman's statement. Chen[6] gives an equation of similar form. Whereas G(·) is conductivity as a function of frequency, , and are all real constants.

Usually the resistive losses grow proportionately to and dielectric losses grow proportionately to with so at a high enough frequency, dielectric losses will exceed resistive losses. In practice, before that point is reached, a transmission line with a better dielectric is used. In long distance rigid coaxial cable, to get very low dielectric losses, the solid dielectric may be replaced by air with plastic spacers at intervals to keep the center conductor on axis.

The equations

Time domain

The telegrapher's equations in the time domain are:

They can be combined to get two partial differential equations, each with only one dependent variable, either or :

Except for the dependent variable ( or ) the formulas are identical.

Frequency domain

The telegrapher's equations in the frequency domain are developed in similar forms in the following references: Kraus,[7] Hayt,[1] Marshall,[8]: 59–378  Sadiku,[9]: 497–505  Harrington,[10] Karakash,[11] Metzger.[12] The first equation means that , the propagating voltage at point , is decreased by the voltage loss produced by , the current at that point passing through the series impedance . The second equation means that , the propagating current at point , is decreased by the current loss produced by , the voltage at that point appearing across the shunt admittance .

The subscript ω indicates possible frequency dependence. and are phasors.

These equations may be combined to produce two, single-variable partial differential equations. where [1]: 385 
is called the attenuation constant and is called the phase constant.

Homogeneous solutions

Each of the preceding partial differential equations have two homogeneous solutions in an infinite transmission line.

For the voltage equation

For the current equation

The negative sign in the previous equation indicates that the current in the reverse wave is traveling in the opposite direction.

Note: where the following symbol definitions hold:

Symbol definitions
Symbol Definition
point at which the values of the forward waves are known
point at which the values of the reverse waves are known
value of the total voltage at point x
value of the forward voltage wave at point x
value of the reverse voltage wave at point x
value of the forward voltage wave at point a
value of the reverse voltage wave at point b
value of the total current at point x
value of the forward current wave at point x
value of the reverse current wave at point x
value of the forward current wave at point a
value of the reverse current wave at point b
Characteristic impedance

Finite length

Coaxial transmission line with one source and one load

Johnson gives the following solution,[2]: 739–741  where and is the length of the transmission line.

In the special case where all the impedances are equal, the solution reduces to .

Lossless transmission

When and , wire resistance and insulation conductance can be neglected, and the transmission line is considered as an ideal lossless structure. In this case, the model depends only on the L and C elements. The telegrapher's equations then describe the relationship between the voltage V and the current I along the transmission line, each of which is a function of position x and time t:

The equations for lossless transmission lines

The equations themselves consist of a pair of coupled, first-order, partial differential equations. The first equation shows that the induced voltage is related to the time rate-of-change of the current through the cable inductance, while the second shows, similarly, that the current drawn by the cable capacitance is related to the time rate-of-change of the voltage.

These equations may be combined to form two wave equations, one for voltage , the other for current : where is the propagation speed of waves traveling through the transmission line. For transmission lines made of parallel perfect conductors with vacuum between them, this speed is equal to the speed of light.

Sinusoidal steady-state

In the case of sinusoidal steady-state (i.e., when a pure sinusoidal voltage is applied and transients have ceased), the voltage and current take the form of single-tone sine waves: where is the angular frequency of the steady-state wave. In this case, the telegrapher's equations reduce to

Likewise, the wave equations reduce to where k is the wave number:

Each of these two equations is in the form of the one-dimensional Helmholtz equation.

In the lossless case, it is possible to show that and where in this special case, is a real quantity that may depend on frequency and is the characteristic impedance of the transmission line, which, for a lossless line is given by and and are arbitrary constants of integration, which are determined by the two boundary conditions (one for each end of the transmission line).

This impedance does not change along the length of the line since L and C are constant at any point on the line, provided that the cross-sectional geometry of the line remains constant.

The lossless line and distortionless line are discussed in Sadiku (1989)[9]: 501–503  and Marshall (1987).[8]: 369–372 

Loss-free case, general solution

In the loss-free case (), the most general solution of the wave equation for the voltage is the sum of a forward traveling wave and a backward traveling wave: where

  • and can be any two analytic functions, and
  • is the waveform's propagation speed (also known as phase velocity).

Here, represents the amplitude profile of a wave traveling from left to right – in a positive direction – whilst represents the amplitude profile of a wave traveling from right to left. It can be seen that the instantaneous voltage at any point on the line is the sum of the voltages due to both waves.

Using the current and voltage relations given by the telegrapher's equations, we can write

Lossy transmission line

In the presence of losses the solution of the telegrapher's equation has both damping and dispersion, as visible when compared with the solution of a lossless wave equation.

When the loss elements and are too substantial to ignore, the differential equations describing the elementary segment of line are

By differentiating both equations with respect to x, and some algebra, we obtain a pair of hyperbolic partial differential equations each involving only one unknown:

These equations resemble the homogeneous wave equation with extra terms in V and I and their first derivatives. These extra terms cause the signal to decay and spread out with time and distance. If the transmission line is only slightly lossy ( and ), signal strength will decay over distance as where .[13]

Solutions of the telegrapher's equations as circuit components

Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Zo is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Zo(s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", sj ω, and j2 ≡ −1.

The solutions of the telegrapher's equations can be inserted directly into a circuit as components. The circuit in the figure implements the solutions of the telegrapher's equations.[14]

The solution of the telegrapher's equations can be expressed as an ABCD two-port network with the following defining equations[11]: 5–14, 44  where and just as in the preceding sections. The line parameters Rω, Lω, Gω, and Cω are subscripted by ω to emphasize that they could be functions of frequency.

The ABCD type two-port gives and as functions of and . The voltage and current relations are symmetrical: Both of the equations shown above, when solved for and as functions of and yield exactly the same relations, merely with subscripts "1" and "2" reversed, and the terms' signs made negative ("1"→"2" direction is reversed "1"←"2", hence the sign change).

Every two-wire or balanced transmission line has an implicit (or in some cases explicit) third wire which is called the shield, sheath, common, earth, or ground. So every two-wire balanced transmission line has two modes which are nominally called the differential mode and common mode. The circuit shown in the bottom diagram only can model the differential mode.

In the top circuit, the voltage doublers, the difference amplifiers, and impedances Zo(s) account for the interaction of the transmission line with the external circuit. This circuit is a useful equivalent for an unbalanced transmission line like a coaxial cable.

These are not unique: Other equivalent circuits are possible.

See also

References

  1. ^ a b c Hayt, William H. (1989). Engineering Electromagnetics (5th ed.). McGraw-Hill. pp. 381–392. ISBN 0070274061 – via Internet Archive (archive.org).
  2. ^ a b Johnson, Howard; Graham, Martin (2003). High Speed Signal Propagation (1st ed.). Prentice-Hall. ISBN 0-13-084408-X.
  3. ^ Hunt, Bruce J. (2005). The Maxwellians. Ithaca, NY, USA: Cornell University Press. pp. 66–67. ISBN 0-80148234-8.
  4. ^ Reeve, Whitman D. (1995). Subscriber Loop Signaling and Transmission Handbook. IEEE Press. p. 558. ISBN 0-7803-0440-3.
  5. ^ Terman, Frederick Emmons (1943). Radio Engineers' Handbook (1st ed.). McGraw-Hill. p. 112.
  6. ^ Chen, Walter Y. (2004). Home Networking Basics. Prentice Hall. p. 26. ISBN 0-13-016511-5.
  7. ^ Kraus, John D. (1984). Electromagnetics (3rd ed.). McGraw-Hill. pp. 380–419. ISBN 0-07-035423-5.
  8. ^ a b Marshall, Stanley V.; Skitek, Gabriel G. (1987). Electromagnetic Concepts and Applications (2nd ed.). Prentice-Hall. ISBN 0-13-249004-8.
  9. ^ a b Sadiku, Matthew N.O. (1989). Elements of Electromagnetics (1st ed.). Saunders College Publishing. ISBN 0-03-013484-6.
  10. ^ Harrington, Roger F. (1961). Time-Harmonic Electromagnetic Fields (1st ed.). McGraw-Hill. pp. 61–65. ISBN 0-07-026745-6.
  11. ^ a b Karakash, John J. (1950). Transmission lines and Filter Networks (1st ed.). Macmillan. pp. 5–14.
  12. ^ Metzger, Georges; Vabre, Jean-Paul (1969). Transmission Lines with Pulse Excitation (1st ed.). Academic Press. pp. 1–10. LCCN 69-18342.
  13. ^ Miano, Giovanni; Maffucci, Antonio (2001). Transmission Lines and Lumped Circuits. Academic Press. p. 130. ISBN 0-12-189710-9. The book uses the symbol μ instead of α.
  14. ^ McCammon, Roy (June 2010). "SPICE Simulation of Transmission Lines by the Telegrapher's Method" (PDF). cmpnet.com. RF Design Line. Retrieved 2010-10-22; also "Part 1 of 3". SPICE simulation of transmission lines by the telegrapher's method. Microwave & RF design – via E.E. Times.

Read other articles:

РокльRocles Країна  Франція Регіон Овернь-Рона-Альпи  Департамент Ардеш  Округ Ларжантьєр Кантон Ларжантьєр Код INSEE 07196 Поштові індекси 07110 Координати 44°33′48″ пн. ш. 4°13′00″ сх. д.H G O Висота 270 - 1 207 м.н.р.м. Площа 16,51 км² Населення 257 (01-2020[1]) Густота 15,08 ос./км²

 

Cet article est une ébauche concernant la littérature française. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. L'Ours et l'Amateur des jardins Illustration de Gustave Doré Auteur Jean de La Fontaine Pays France Genre Fable Éditeur Claude Barbin Lieu de parution Paris Date de parution 1678 Chronologie Le Rat et l'Huître Les Deux Amis modifier  L’Ours et l’Amateur des jardins est la dixième fable ...

 

تعداد المسلمين في خريطة العالم بالنسبة المئوية في كل بلد، وفقا لمنتدى بيو. (تقديرات 29 يونيو 2014). جزء من سلسلة مقالات حولالإسلام العقيدة الإيمان توحيد الله الإيمان بالملائكة الإيمان بالكتب السماوية الإيمان بالرسل والأنبياء الإيمان باليوم الآخر الإيمان بالقضاء والقدر أركان

Dieser Artikel behandelt den früheren griechischen Ministerpräsidenten. Zum späteren griechischen Ministerpräsidenten siehe Kostas Karamanlis. Konstantinos Karamanlis Karamanlis (links) beim Besuch der Athener Markthalle (Agora). Rechts: Stefanos Natsinas. Konstantinos Karamanlis (griechisch Κωνσταντίνος Καραμανλής, * 8. März 1907 in Küpköy, heute Proti; † 23. April 1998 in Athen) war ein griechischer Jurist und Politiker. Inhaltsverzeichnis 1 Jugend und Karrier...

 

Batalyon Artileri Medan 7/Biring GalihLambang Yon Armed 7/105 GS/Biring GalihDibentuk15 Februari 1977NegaraIndonesiaCabangArmedTipe unitSatuan Bantuan TempurPeranPasukan Artileri DaratBagian dariKodam JayaMarkasKota Bekasi, Jawa BaratJulukanYon Armed 7/105 GS/BGMotoDure Catru WinasenaBaretCoklatMaskotTombak Sakti Pangeran JayakartaUlang tahun15 FebruariAlutsistaAMX MK-61 105mm dan M109 A4 155mm Batalyon Artileri Medan 7/Biring Galih atau Yon Armed 7/105/Gerak Sendiri adalah merupakan batalyon...

 

Film by Stephen Norrington BladeTheatrical release posterDirected byStephen NorringtonWritten byDavid S. GoyerBased onBladeby Marv WolfmanGene ColanProduced by Peter Frankfurt Wesley Snipes Robert Engelman Starring Wesley Snipes Stephen Dorff Kris Kristofferson N'Bushe Wright Donal Logue CinematographyTheo van de SandeEdited byPaul RubellMusic byMark IshamProductioncompanies New Line Cinema Marvel Enterprises Amen Ra Films Imaginary Forces Distributed byNew Line CinemaRelease date August ...

Offizielles Logo des Kinderhilfsprojektes Fahrradhelden Fahrradhelden ist ein Verein mit Sitz in Berlin. Das deutschlandweit tätige Kinderhilfsprojekt schafft Mobilität für Heim- und Pflegekinder sowie Care Leaver. Fahrradhelden spenden Fahrräder an Kinder und Jugendliche. Auch die Reparatur und Wartung wird übernommen. Inhaltsverzeichnis 1 Geschichte 2 Schirmherrschaften 3 Preise 4 Prominente Unterstützung 5 Fahrradhelden-Tour 6 Weblinks 7 Einzelnachweise Geschichte Fahrradhelden wurde...

 

This article is about the 1996 Hong Kong TV show. For other uses, see Unbelievable (disambiguation). This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (April 2014) (Learn how and when to remove this template message) Hong Kong TV series or program The UnbelievableHosts and guests talking about paranormal activitiesGenre...

 

Plattegrond van het slot, zoals het er in de middeleeuwen zou hebben uitgezien. Het slot van de landszijde. Näs slott (ook wel Visingsö borg en Näsborg genoemd) was een middeleeuwse burcht, gelegen op het Zweedse eiland Visingsö. De burcht lag aan de zuidwestzijde van het eiland en was een belangrijk onderkomen voor de Zweedse koningen tussen 1100 en 1300. De eerste bebouwing werd onder leiding van Sverker I van Zweden gedaan. Zijn zoon Karel VII van Zweden zette de bebouwing voort en was...

Pour des articles plus généraux, voir Histoire d'Arles et Arles. Blason de la ville d'Arles Cette chronologie d'Arles liste les événements historiques de la ville d'Arles, située en France dans le département des Bouches-du-Rhône en région Provence-Alpes-Côte d'Azur. Avant les Romains Vers 800 av. J.-C. : la région rhodanienne et provençale occupée par les Ligures voit l'arrivée progressive de Celtes, d'où le terme celto-ligure s’appliquant aux indigènes. Vers 625 av. J....

 

ワレリー・ゲラシモフВале́рий Васи́льевич Гера́симов 2017年のワレリー・ゲラシモフ生誕 (1955-09-08) 1955年9月8日(68歳) ソビエト連邦 ロシア・ソビエト連邦社会主義共和国タタール自治ソビエト社会主義共和国カザン所属組織 ソビエト連邦軍ロシア連邦軍軍歴 1976年 -最終階級 上級大将[1]戦闘 第二次チェチェン紛争シリア内戦ウクライナ紛争 (2014年-)...

 

Veerabhadran RamanathanPortrait of Veerabhadran RamanathanBorn (1944-11-24) 24 November 1944 (age 79)[1]Chennai, Madras Presidency, British IndiaAlma materAnnamalai UniversityIIScStony BrookAwards • Buys Ballot Medal • Carl-Gustaf Rossby Research Medal • Tyler Prize for Environmental Achievement • BBVA Foundation Frontiers of Knowledge Award • Tang PrizeScientific careerFieldsAtmospheric ScientistInst...

雪印種苗株式会社Snow Brand Seed Co., Ltd.種類 株式会社市場情報 東証2部 20571994年6月17日 - 2008年5月9日 札証 20571994年6月17日 - 2008年5月9日 本社所在地 日本〒004-8531札幌市厚別区上野幌1-5-1-8設立 1950年12月15日業種 水産・農林業法人番号 6430001017705 事業内容 飼料作物・野菜・花卉・緑肥作物・果樹種苗の生産販売、配混合飼料・単味飼料の製造販売、造園代表者 代表取締役社長 ...

 

2005 live album by Jay Chou2004 Incomparable ConcertLive album by Jay ChouReleased21 January 2005 (2005-01-21)Recorded2 October 2004 (2004-10-02)VenueTaipei Municipal StadiumGenreMandopopLabelSony, AlfaJay Chou chronology Common Jasmin Orange(2004) 2004 Incomparable Concert(2005) Initial J(2005) 2004 Incomparable Concert (simplified Chinese: 2004无与伦比演唱会; traditional Chinese: 2004無與倫比演唱會) is the second live album by Taiw...

 

Crater on Mercury Crater on MercuryDegasDegas crater, MESSENGER spacecraft image, 2011. Inset is Mariner 10 image from 1974.PlanetMercuryCoordinates37°30′N 127°00′W / 37.5°N 127°W / 37.5; -127QuadrangleShakespeareDiameter54 km (34 mi)DiscovererMariner 10EponymEdgar Degas Degas is a rayed crater on Mercury at latitude 37.5 N, longitude 127 W. Its diameter is 54 kilometres (34 mi). It was named after the French impressionist painter Edgar Degas in ...

Festival Lagu Populer Indonesia 1987Kompilasi karya Various ArtistDirilisAgustus 1987 [1]Direkam?GenrePopDurasi?LabelBulletinSeries Festival Lagu Populer Indonesia 1986 (1986)'Festival Lagu Populer Indonesia 1986'1986 Festival Lagu Populer Indonesia 1987 (1987) Festival Lagu Populer Indonesia 1988 (1988)'Festival Lagu Populer Indonesia 1988'1988 Festival Lagu Populer Indonesia 1987 adalah Album kompilasi yang dirilis pada tahun 1987. Sepanjang sejarah Festival Lagu Populer Indones...

 

البركزاي الدولة البركزاية 1826 م – 1973 م شعار البركزاي عاصمة كابل نظام الحكم امارة-مملكة اللغة البشتوية الديانة الإسلام الحاكم التاريخ التأسيس 1826 م الزوال 1973 م اليوم جزء من  أفغانستان باكستان الهند إيران تركمانستان أوزبكستان تعديل مصدري - تعديل   الب...

 

2022–23 意大利盃賽季資料地区意大利比賽日期2022年7月31日–2023年5月25日隊數44[1]賽季成績總結冠軍國際米蘭(第 9 次奪冠)亞軍費倫天拿賽季統計比賽場數45總進球數143 球(每場平均 3.18 進球)总入場人數808,302 人(每場平均 17,962 人) 最佳射手瓦利德·切迪拉(英语:Walid Cheddira) (5球)← 2021–22 2023–24 → 所有資料更新自2023年5月25日 2022–23年意大利盃(因為第...

Paghimo ni bot Lsjbot. Alang sa ubang mga dapit sa mao gihapon nga ngalan, tan-awa ang West Fork Sheep Creek. 42°14′55″N 111°08′12″W / 42.24854°N 111.13658°W / 42.24854; -111.13658 West Fork Sheep Creek Suba Nasod  Tinipong Bansa Estado Idaho Kondado Bear Lake County Gitas-on 1,874 m (6,148 ft) Tiganos 42°14′55″N 111°08′12″W / 42.24854°N 111.13658°W / 42.24854; -111.13658 Timezone MST (UTC-7)  - summer ...

 

Trenger oppdatering: Denne artikkelen eller seksjonen er ikke oppdatert med ny utvikling eller ny informasjon. Du kan hjelpe Wikipedia med å oppdatere den. Xbox Live Utvikler(e)MicrosoftUtgitt 15. november 2002Nyeste versjon2.0.16537.0PlattformWindows Phone, Xbox, Xbox 360, Xbox One, Android, iOS, Microsoft Windows, Xbox Series X/SNettstedwww.xbox.com (en)Xbox Live på Commons Xbox Live er spillkonsollen Xbox sin tjeneste for spilling over nett og nedlasting av materiale som demoer, trailere...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!