Rogers–Ramanujan identities

In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions. The identities were first discovered and proved by Leonard James Rogers (1894), and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913. Ramanujan had no proof, but rediscovered Rogers's paper in 1917, and they then published a joint new proof (Rogers & Ramanujan 1919). Issai Schur (1917) independently rediscovered and proved the identities.

Definition

The Rogers–Ramanujan identities are

(sequence A003114 in the OEIS)

and

(sequence A003106 in the OEIS).

Here, denotes the q-Pochhammer symbol.

Combinatorial interpretation

Consider the following:

  • is the generating function for partitions with exactly parts such that adjacent parts have difference at least 2.
  • is the generating function for partitions such that each part is congruent to either 1 or 4 modulo 5.
  • is the generating function for partitions with exactly parts such that adjacent parts have difference at least 2 and such that the smallest part is at least 2.
  • is the generating function for partitions such that each part is congruent to either 2 or 3 modulo 5.

The Rogers–Ramanujan identities could be now interpreted in the following way. Let be a non-negative integer.

  1. The number of partitions of such that the adjacent parts differ by at least 2 is the same as the number of partitions of such that each part is congruent to either 1 or 4 modulo 5.
  2. The number of partitions of such that the adjacent parts differ by at least 2 and such that the smallest part is at least 2 is the same as the number of partitions of such that each part is congruent to either 2 or 3 modulo 5.

Alternatively,

  1. The number of partitions of such that with parts the smallest part is at least is the same as the number of partitions of such that each part is congruent to either 1 or 4 modulo 5.
  2. The number of partitions of such that with parts the smallest part is at least is the same as the number of partitions of such that each part is congruent to either 2 or 3 modulo 5.

Application to partitions

Since the terms occurring in the identity are generating functions of certain partitions, the identities make statements about partitions (decompositions) of natural numbers. The number sequences resulting from the coefficients of the Maclaurin series of the Rogers–Ramanujan functions G and H are special partition number sequences of level 5:

The number sequence (OEIS code: A003114[1]) represents the number of possibilities for the affected natural number n to decompose this number into summands of the patterns 5a + 1 or 5a + 4 with a ∈ . Thus gives the number of decays of an integer n in which adjacent parts of the partition differ by at least 2, equal to the number of decays in which each part is equal to 1 or 4 mod 5 is.

And the number sequence (OEIS code: A003106[2]) analogously represents the number of possibilities for the affected natural number n to decompose this number into summands of the patterns 5a + 2 or 5a + 3 with a ∈ . Thus gives the number of decays of an integer n in which adjacent parts of the partition differ by at least 2 and in which the smallest part is greater than or equal to 2 is equal the number of decays whose parts are equal to 2 or 3 mod 5. This will be illustrated as examples in the following two tables:

Partition number sequence
Natural number n Sum representations with the described criteria
1 1 1
2 1 1+1
3 1 1+1+1
4 2 4, 1+1+1+1
5 2 4+1, 1+1+1+1+1
6 3 6, 4+1+1, 1+1+1+1+1+1
7 3 6+1, 4+1+1+1, 1+1+1+1+1+1+1
8 4 6+1+1, 4+4, 4+1+1+1+1, 1+1+1+1+1+1+1+1
9 5 9, 6+1+1+1, 4+4+1, 4+1+1+1+1+1, 1+1+1+1+1+1+1+1+1
10 6 9+1, 6+4, 6+1+1+1+1, 4+4+1+1, 4+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1
11 7 11, 9+1+1, 6+4+1, 6+1+1+1+1+1, 4+4+1+1+1, 4+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1
12 9 11+1, 9+1+1+1, 6+6, 6+4+1+1, 6+1+1+1+1+1+1, 4+4+4, 4+4+1+1+1+1, 4+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1
13 10 11+1+1, 9+4, 9+1+1+1+1, 6+6+1, 6+4+1+1+1, 6+1+1+1+1+1+1+1, 4+4+4+1, 4+4+1+1+1+1+1, 4+1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1+1
14 12 14, 11+1+1+1, 9+4+1, 9+1+1+1+1+1, 6+6+1+1, 6+4+4, 6+4+1+1+1+1, 6+1+1+1+1+1+1+1+1, 4+4+4+1+1, 4+4+1+1+1+1+1+1, 4+1+1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1+1+1
15 14 14+1, 11+4, 11+1+1+1+1, 9+6, 9+4+1+1, 9+1+1+1+1+1+1, 6+6+1+1+1, 6+4+4+1, 6+4+1+1+1+1+1, 6+1+1+1+1+1+1+1+1+1, 4+4+4+1+1+1, 4+4+1+1+1+1+1+1+1, 4+1+1+1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
16 17 16, 14+1+1, 11+4+1, 11+1+1+1+1+1, 9+6+1, 9+4+1+1+1, 9+1+1+1+1+1+1+1, 6+6+4, 6+6+1+1+1+1, 6+4+4+1+1, 6+4+1+1+1+1+1+1, 6+1+1+1+1+1+1+1+1+1+1, 4+4+4+4, 4+4+4+1+1+1+1, 4+4+1+1+1+1+1+1+1+1, 4+1+1+1+1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
Partition number sequence
Natural number n Sum representations with the described criteria
1 0 none
2 1 2
3 1 3
4 1 2+2
5 1 3+2
6 2 3+3, 2+2+2
7 2 7, 3+2+2
8 3 8, 3+3+2, 2+2+2+2
9 3 7+2, 3+3+3, 3+2+2+2
10 4 8+2, 7+3, 3+3+2+2, 2+2+2+2+2

Rogers–Ramanujan continued fractions R and S

Definition of the continued fractions

Domain coloring representation of the convergent of the function , where is the Rogers–Ramanujan continued fraction.
Representation of the approximation of the Rogers–Ramanujan continued fraction.

The following continued fraction is called Rogers–Ramanujan continued fraction,[3][4] Continuing fraction is called alternating Rogers–Ramanujan continued fraction!

Standardized continued fraction Alternating continued fraction

The factor creates a quotient of module functions and it also makes these shown continued fractions modular:

This definition applies[5] for the continued fraction mentioned:

This is the definition of the Ramanujan theta function:

With this function, the continued fraction R can be created this way:

.

The connection between the continued fraction and the Rogers–Ramanujan functions was already found by Rogers in 1894 (and later independently by Ramanujan).

The continued fraction can also be expressed by the Dedekind eta function:[6]

The alternating continued fraction has the following identities to the remaining Rogers–Ramanujan functions and to the Ramanujan theta function described above:

Identities with Jacobi theta functions

The following definitions are valid for the Jacobi "Theta-Nullwert" functions:

And the following product definitions are identical to the total definitions mentioned:

These three so-called theta zero value functions are linked to each other using the Jacobian identity:

The mathematicians Edmund Taylor Whittaker and George Neville Watson[7][8][9] discovered these definitional identities.

The Rogers–Ramanujan continued fraction functions and have these relationships to the theta Nullwert functions:

The element of the fifth root can also be removed from the elliptic nome of the theta functions and transferred to the external tangent function. In this way, a formula can be created that only requires one of the three main theta functions:

Modular modified functions of G and H

Definition of the modular form of G and H

An elliptic function is a modular function if this function in dependence on the elliptic nome as an internal variable function results in a function, which also results as an algebraic combination of Legendre's elliptic modulus and its complete elliptic integrals of the first kind in the K and K' form. The Legendre's elliptic modulus is the numerical eccentricity of the corresponding ellipse.

If you set (where the imaginary part of is positive), following two functions are modular functions!

If q = e2πiτ, then q−1/60G(q) and q11/60H(q) are modular functions of τ.

For the Rogers–Ramanujan continued fraction R(q) this formula is valid based on the described modular modifications of G and H:

Special values

These functions have the following values for the reciprocal of Gelfond's constant and for the square of this reciprocal:

The Rogers–Ramanujan continued fraction takes the following ordinate values for these abscissa values:

Dedekind eta function identities

Derivation by the geometric mean

Given are the mentioned definitions of and in this already mentioned way:

The Dedekind eta function identities for the functions G and H result by combining only the following two equation chains:

The quotient is the Rogers Ramanujan continued fraction accurately:

But the product leads to a simplified combination of Pochhammer operators:

The geometric mean of these two equation chains directly lead to following expressions in dependence of the Dedekind eta function in their Weber form:

In this way the modulated functions and are represented directly using only the continued fraction R and the Dedekind eta function quotient!

With the Pochhammer products alone, the following identity then applies to the non-modulated functions G and H:

Pentagonal number theorem

For the Dedekind eta function according to Weber's definition[10] these formulas apply:

The fourth formula describes the pentagonal number theorem[11] because of the exponents!

These basic definitions apply to the pentagonal numbers and the card house numbers:

The fifth formula contains the Regular Partition Numbers as coefficients.

The Regular Partition Number Sequence itself indicates the number of ways in which a positive integer number can be split into positive integer summands. For the numbers to , the associated partition numbers with all associated number partitions are listed in the following table:

Example values of P(n) and associated number partitions
n P(n) Corresponding partitions
1 1 (1)
2 2 (1+1), (2)
3 3 (1+1+1), (1+2), (3)
4 5 (1+1+1+1), (1+1+2), (2+2), (1+3), (4)
5 7 (1+1+1+1+1), (1+1+1+2), (1+2+2), (1+1+3), (2+3), (1+4), (5)
6 11 (1+1+1+1+1+1), (1+1+1+1+2), (1+1+2+2), (2+2+2), (1+1+1+3), (1+2+3), (3+3), (1+1+4), (2+4), (1+5), (6)

Further Dedekind eta identities

The following further simplification for the modulated functions and can be undertaken. This connection applies especially to the Dedekind eta function from the fifth power of the elliptic nome:

These two identities with respect to the Rogers–Ramanujan continued fraction were given for the modulated functions and :

The combination of the last three formulas mentioned results in the following pair of formulas:

Reduced Weber modular function

The Weber modular functions in their reduced form are an efficient way of computing the values of the Rogers–Ramanujan functions:

First of all we introduce the reduced Weber modular functions in that pattern:

This function fulfills following equation of sixth degree:

Therefore this function is an algebraic function indeed.

But along with the Abel–Ruffini theorem this function in relation to the eccentricity can not be represented by elementary expressions.

However there are many values that in fact can be expressed elementarily.

Four examples shall be given for this:

First example:

Second example:

Third example:

Fourth example:

For that function, a further expression is valid:

Exact eccentricity identity for the functions G and H

In this way the accurate eccentricity dependent formulas for the functions G and H can be generated:

Following Dedekind eta function quotient has this eccentricity dependency:

This is the eccentricity dependent formula for the continued fraction R:

The last three now mentioned formulas will be inserted into the final formulas mentioned in the section above:

On the left side of the balances the functions and in relation to the elliptic nome function are written down directly.

And on the right side an algebraic combination of the eccentricity is formulated.

Therefore these functions and are modular functions indeed!

Application to quintic equations

Discovery of the corresponding modulus by Charles Hermite

The general case of quintic equations in the Bring–Jerrard form has a non-elementary solution based on the Abel–Ruffini theorem and will now be explained using the elliptic nome of the corresponding modulus, described by the lemniscate elliptic functions in a simplified way.

The real solution for all real values can be determined as follows:

Alternatively, the same solution can be presented in this way:

The mathematician Charles Hermite determined the value of the elliptic modulus k in relation to the coefficient of the absolute term of the Bring–Jerrard form. In his essay "Sur la résolution de l'Équation du cinquiéme degré Comptes rendus" he described the calculation method for the elliptic modulus in terms of the absolute term. The Italian version of his essay "Sulla risoluzione delle equazioni del quinto grado" contains exactly on page 258 the upper Bring–Jerrard equation formula, which can be solved directly with the functions based on the corresponding elliptic modulus. This corresponding elliptic modulus can be worked out by using the square of the Hyperbolic lemniscate cotangent. For the derivation of this, please see the Wikipedia article lemniscate elliptic functions!

The elliptic nome of this corresponding modulus is represented here with the letter Q:

The abbreviation ctlh expresses the Hyperbolic Lemniscate Cotangent and the abbreviation aclh represents the Hyperbolic Lemniscate Areacosine!

Calculation examples

Two examples of this solution algorithm are now mentioned:

First calculation example:

Quintic Bring–Jerrard equation:

Solution formula:

Decimal places of the nome:

Decimal places of the solution:

Second calculation example:

Quintic Bring–Jerrard equation:

Solution:

Decimal places of the nome:

Decimal places of the solution:

Applications in Physics

The Rogers–Ramanujan identities appeared in Baxter's solution of the hard hexagon model in statistical mechanics.

The demodularized standard form of the Ramanujan's continued fraction unanchored from the modular form is as follows::

Relations to affine Lie algebras and vertex operator algebras

James Lepowsky and Robert Lee Wilson were the first to prove Rogers–Ramanujan identities using completely representation-theoretic techniques. They proved these identities using level 3 modules for the affine Lie algebra . In the course of this proof they invented and used what they called -algebras. Lepowsky and Wilson's approach is universal, in that it is able to treat all affine Lie algebras at all levels. It can be used to find (and prove) new partition identities. First such example is that of Capparelli's identities discovered by Stefano Capparelli using level 3 modules for the affine Lie algebra .

See also

References

  1. ^ "A003114 - OEIS". Retrieved 2022-08-06.
  2. ^ "A003106 - OEIS". Retrieved 2022-08-06.
  3. ^ Weisstein, Eric W. "Rogers-Ramanujan Continued Fraction". mathworld.wolfram.com. Retrieved 2024-09-30.
  4. ^ Bruce Berndt et al., The Rogers–Ramanujan continued fraction, pdf
  5. ^ Bruce C. Berndt, Heng Huat Chan, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, Seung Hwan Son (1999-05-01), "The Rogers–Ramanujan continued fraction", Journal of Computational and Applied Mathematics, vol. 105, no. 1, pp. 9–24, CiteSeerX 10.1.1.47.3006, doi:10.1016/S0377-0427(99)00033-3, ISSN 0377-0427, retrieved 2023-09-07{{citation}}: CS1 maint: multiple names: authors list (link)
  6. ^ Weisstein, Eric W. "Rogers–Ramanujan Continued Fraction". MathWorld.
  7. ^ Weisstein, Eric W. "Jacobi Theta Functions". MathWorld.
  8. ^ http://wayback.cecm.sfu.ca/ ~pborwein/TEMP_PROTECTED/pi-agm.pdf
  9. ^ "DLMF: 20.5 Infinite Products and Related Results". 2022-08-13.
  10. ^ Eric W. Weisstein. "Dedekind Eta Function". Retrieved 2022-04-02.
  11. ^ "Download PDF - A Brief Introduction to Theta Functions [PDF] [6v41da306900]".
  • Rogers, L. J.; Ramanujan, Srinivasa (1919), "Proof of certain identities in combinatory analysis.", Cambr. Phil. Soc. Proc., 19: 211–216, Reprinted as Paper 26 in Ramanujan's collected papers
  • Rogers, L. J. (1892), "On the expansion of some infinite products", Proc. London Math. Soc., 24 (1): 337–352, doi:10.1112/plms/s1-24.1.337, JFM 25.0432.01
  • Rogers, L. J. (1893), "Second Memoir on the Expansion of certain Infinite Products", Proc. London Math. Soc., 25 (1): 318–343, doi:10.1112/plms/s1-25.1.318
  • Rogers, L. J. (1894), "Third Memoir on the Expansion of certain Infinite Products", Proc. London Math. Soc., 26 (1): 15–32, doi:10.1112/plms/s1-26.1.15
  • Schur, Issai (1917), "Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche", Sitzungsberichte der Berliner Akademie: 302–321
  • W.N. Bailey, Generalized Hypergeometric Series, (1935) Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Cambridge University Press, Cambridge.
  • George Gasper and Mizan Rahman, Basic Hypergeometric Series, 2nd Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge. ISBN 0-521-83357-4.
  • Bruce C. Berndt, Heng Huat Chan, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, Seung Hwan Son, The Rogers–Ramanujan Continued Fraction, J. Comput. Appl. Math. 105 (1999), pp. 9–24.
  • Cilanne Boulet, Igor Pak, A Combinatorial Proof of the Rogers–Ramanujan and Schur Identities, Journal of Combinatorial Theory, Ser. A, vol. 113 (2006), 1019–1030.
  • Slater, L. J. (1952), "Further identities of the Rogers–Ramanujan type", Proceedings of the London Mathematical Society, Series 2, 54 (2): 147–167, doi:10.1112/plms/s2-54.2.147, ISSN 0024-6115, MR 0049225
  • James Lepowsky and Robert L. Wilson, Construction of the affine Lie algebra , Comm. Math. Phys. 62 (1978) 43-53.
  • James Lepowsky and Robert L. Wilson, A new family of algebras underlying the Rogers–Ramanujan identities, Proc. Natl. Acad. Sci. USA 78 (1981), 7254-7258.
  • James Lepowsky and Robert L. Wilson, The structure of standard modules, I: Universal algebras and the Rogers–Ramanujan identities, Invent. Math. 77 (1984), 199-290.
  • James Lepowsky and Robert L. Wilson, The structure of standard modules, II: The case , principal gradation, Invent. Math. 79 (1985), 417-442.
  • Stefano Capparelli, Vertex operator relations for affine algebras and combinatorial identities, Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick. 1988. 107 pp.

Read other articles:

Solomon beralih ke halaman ini. Untuk negara, lihat Kepulauan Solomon. Untuk kegunaan lain, lihat Solomon (disambiguasi). SalomoשְׁלֹמֹהSalomo di usia tua (1866) oleh Gustave DoréRaja IsraelBerkuasaca. 970–931 SM (perkiraan)PendahuluDaudPenerusRehabeamInformasi pribadiKelahiran± 1000 SMYerusalemKematian931 SMYerusalemWangsaWangsa DaudAyahDaudIbuBatsyebaAnakRehabeamTafat[1]Basemat[2] Salomo,[a] atau Yedidiah,[b] adalah seorang raja Israel kuno ...

 

Ratu Vashti AnnisaVashti sebagai Miss Earth Indonesia 2018LahirRatu Vashti Annisa29 Januari 1995 (umur 28)Jakarta, IndonesiaPekerjaanModelratu kecantikanaktrisTahun aktif2017—sekarangTinggi1,72 m (5 ft 7+1⁄2 in)[1]Pemenang kontes kecantikanGelarMiss Eco Indonesia 2019Miss Earth Indonesia 2018Puteri Indonesia Banten 2017 (gelar dicabut[2])Warna rambutHitamWarna mataHitamKompetisiutamaPuteri Indonesia 2017(Peserta)Miss Earth Indonesia 2018(Pemena...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) جوشوا آي. سميث معلومات شخصية الميلاد 8 أبريل 1941 (82 سنة)  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة سنترال الحكومية  [لغات أخرى]‏...

Зауважте, Вікіпедія не дає медичних порад!Якщо у вас виникли проблеми зі здоров'ям — зверніться до лікаря. Зліва кров відстоялася і відбувся розподіл на плазму та формені елементи, справа — свіжонабрана кров. Гематокри́т[1] (гематокри́тна величина́, гематокри́тне ч

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 18 de noviembre de 2013. Constitución Federal para los Estados de Venezuela Función Confederar a las entonces provincias de Venezuela, estableciendo un Estado independiente de España, bajo un gobierno popular, republicano y federal, consagrando la Primera República.Autor(es) Diputados del Congreso General de VenezuelaRatificación 21 de diciembre de 1811Signatario(s) 38 Dip...

 

Hull CityNama lengkapHull City Association Football ClubJulukanThe TigersBerdiri1904; 118 tahun lalu (1904)StadionKCOMKingston upon Hull(Kapasitas: 25.586[1])KetuaAssem AllamManajerMarco SilvaLigaLiga Utama Inggris2015–16ke-4, Championship (promosi lewat play-off) Kostum kandang Kostum tandang Kostum ketiga Musim ini Hull City Association Football Club adalah sebuah klub sepak bola asal Inggris. Klub ini bermarkas di Kingston upon Hull dan didirikan pada tahun 1904. Klub ini me...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2023) دوق شليسفيغ-هولشتاين-سوندربورغ-بيك فريدرش لودفيغ (بالألمانية: Friedrich Ludwig von Holstein-Sonderburg-Beck)‏    معلومات شخصية الميلاد 6 أبريل 1653[1]  الوفاة 7 مارس 1728 (74 سن

 

Eminem performing in 2018 List of videos by Eminem American rapper Eminem has released five video albums and appeared in various music videos, films, and television programs. His first song to have an official music video was his first single Just Don't Give a Fuck. Video albums Title Album details Notes The Up in Smoke Tour Released: December 5, 2000[1] Label: RED Distribution,Eagle Rock (30001) Format: DVD, UMD, VHS The Up in Smoke Tour is a concert film of a concert held in Worcest...

 

Селище Крутоярка Країна  Україна Область Дніпропетровська область Район Васильківський район Рада Павлівська сільська рада Код КАТОТТГ: Облікова картка Облікова картка  Основні дані Засноване — Площа  км² Населення 23 Поштовий індекс 52640 Телефонний код +380 5639 Ге...

Suburb of Shire of Douglas, Queensland, AustraliaCraiglieQueenslandCaptain Cook Highway, Craiglie, 2015CraiglieCoordinates16°32′22″S 145°27′49″E / 16.5394°S 145.4636°E / -16.5394; 145.4636 (Craiglie (centre of locality))Postcode(s)4877Area14.0 km2 (5.4 sq mi)Time zoneAEST (UTC+10:00)Location 6.1 km (4 mi) S of Port Douglas 16.1 km (10 mi) SE of Mossman 60.0 km (37 mi) NNW of Cairns 1,846 km (1,147...

 

2010 single by μ'sSnow HalationSingle by μ'sfrom the album μ's Best Album Best Live! Collection B-sideBaby Maybe Koi no Button[a]ReleasedDecember 22, 2010GenreJ-popLength4:19LabelLantisComposer(s)Takahiro YamadaLyricist(s)Aki HataProducer(s)Shigeru Saitōμ's singles chronology Bokura no Live Kimi to no Life (2010) Snow Halation (2010) Natsuiro Egao de 1, 2, Jump! (2011) Audio sampleA 24-second sample featuring the chorus after the second verse.filehelpMusic videoOriginal music...

 

Asia KiranaPembuatDAAI TVNegara asal IndonesiaBahasa asliBahasa MandarinProduksiDurasi30 menitRilisJaringan asliDAAI TVFormat gambarPALRilis asli02 Februari 2014 –sekarangPranala luarSitus web Asia Kirana (亞洲大愛溫情/Ya Zhou Da Ai Wen Qing) adalah program berbahasa Mandarin yang ditayangkan di DAAI TV sejak 02 Februari 2014. Membahas kehangatan yang menjadi pelita kasih untuk menerangi jalan kehidupan setiap insan manusia. Menghadirkan berbagai tayangan inspiratif dari neg...

Australian rugby league footballer Martin KennedyPersonal informationBorn (1989-02-20) 20 February 1989 (age 34)Lismore, New South Wales, AustraliaPlaying informationHeight190 cm (6 ft 3 in)Weight122 kg (19 st 3 lb)PositionProp Club Years Team Pld T G FG P 2009–13 Sydney Roosters 66 4 0 0 16 2014 Brisbane Broncos 16 0 0 0 0 Total 82 4 0 0 16 Source: RLP[1] Martin Kennedy (born 20 February 1989) is an Australian professional rugby league footballer ...

 

アメリカ空軍の航空師団一覧を示す 航空師団はかつて、アメリカ空軍にあった編成であり、1948年から1992年まで用いられていた。航空師団(Air Division)は複数の航空団(Wing)で構成されていた。原則として一つまたは複数の航空師団により航空軍(NAF)を構成していた。師団長には概ね准将が充てられた。 一覧 航空団 エンブレム 最終所属 第1戦略航空宇宙師団 戦略航空軍団第...

 

Иисус Христос и Иоанн Богослов (Валантен де Булонь, 1625—1626) Возлюбленный ученик Иисуса (греч. ὁ μαθητὴς ὃν ἠγάπα ὁ Ἰησοῦς) — одно из действующих лиц Евангелия от Иоанна, один из ближайших учеников Христа. Текст Евангелия содержит несколько упоминаний ученика Иисуса,...

Al Hudaydah الحديدةKegubernuranNegaraYamanIbu kotaAl-HudaydahLuas • Total17.509 km2 (6,760 sq mi)Populasi (2011)[1] • Total2.621.000 • Kepadatan0,00.015/km2 (0,00.039/sq mi) Al Hudaydah (Arab: الحديدة Al Ḥudaida) adalah sebuah kegubernuran di Yaman, yang beribu kota di Al Hudaydah. Distrik Distrik Ad Dahi Distrik Ad Durayhimi Distrik Al Garrahi Distrik Al Hajjaylah Distrik Al Hali Distrik Al-Hawak Distrik...

 

For the mall in Dunedin, New Zealand, see Meridian Mall, Dunedin. Shopping mall in Michigan, United StatesMeridian MallMeridian Mall entrance sign along Grand River AvenueLocationMeridian Charter Township (Okemos), Michigan, United StatesOpening dateNovember 6, 1969; 54 years ago (1969-11-06)DeveloperM.H. Hausman Co.ManagementCBL PropertiesOwnerCBL PropertiesNo. of stores and services125No. of anchor tenants8 (6 open, 1 vacant)Total retail floor area997,128 sq ft (...

 

Omar Fraile Datos personalesNombre completo Omar Fraile MatarranzNacimiento Santurce, Vizcaya17 de julio de 1990 (33 años)Altura 1,84 m (6′ 0″)Peso 67 kg (147 lb)Carrera deportivaRepresentante de España EspañaDeporte CiclismoDisciplina RutaEquipo INEOS GrenadiersTrayectoria Equipos amateur 20092010-2011 Opel IbaiganeSeguros Bilbao Equipos profesionales 20122013-20152016-20172018-20212022- Orbea ContinentalCaja RuralDimension DataAstanaINEOS Grenadiers  ...

Slag om de Afsluitdijk Onderdeel van Duitse aanval op Nederland Een van de kazematten Datum 12-14 mei 1940 Locatie Afsluitdijk, Kornwerderzand, Nederland Resultaat Nederlandse overwinning Strijdende partijen  Nederland Nazi-Duitsland Leiders en commandanten Christiaan Boers Kurt Feldt Troepensterkte 225 500+ Verliezen 1 dode 2 gewonden 2 burgers omgekomen 10 burgers gewond 5 doden 25+ gewonden 4 vliegtuigen verloren Portaal    Tweede Wereldoorlog Duitse aanval op Nederland in 1...

 

Jorge Leiva Lavalle Ministro de Economía, Fomento yReconstrucción de Chile 1 de agosto de 1998-11 de marzo de 2000Presidente Eduardo Frei Ruiz TaglePredecesor Álvaro García HurtadoSucesor José De Gregorio Rebeco Ministro presidente de la Comisión Nacional de Energía de Chile 1 de agosto-24 de noviembre de 1998Presidente Eduardo Frei Ruiz TaglePredecesor Álvaro García HurtadoSucesor Óscar Landerretche Gacitúa Información personalNacimiento 31 de mayo de 1939 (84 años)Residenc...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!