Basic hypergeometric series

In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series xn is called hypergeometric if the ratio of successive terms xn+1/xn is a rational function of n. If the ratio of successive terms is a rational function of qn, then the series is called a basic hypergeometric series. The number q is called the base.

The basic hypergeometric series was first considered by Eduard Heine (1846). It becomes the hypergeometric series in the limit when base .

Definition

There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ. The unilateral basic hypergeometric series is defined as

where

and

is the q-shifted factorial. The most important special case is when j = k + 1, when it becomes

This series is called balanced if a1 ... ak + 1 = b1 ...bkq. This series is called well poised if a1q = a2b1 = ... = ak + 1bk, and very well poised if in addition a2 = −a3 = qa11/2. The unilateral basic hypergeometric series is a q-analog of the hypergeometric series since

holds (Koekoek & Swarttouw (1996)).
The bilateral basic hypergeometric series, corresponding to the bilateral hypergeometric series, is defined as

The most important special case is when j = k, when it becomes

The unilateral series can be obtained as a special case of the bilateral one by setting one of the b variables equal to q, at least when none of the a variables is a power of q, as all the terms with n < 0 then vanish.

Simple series

Some simple series expressions include

and

and

The q-binomial theorem

The q-binomial theorem (first published in 1811 by Heinrich August Rothe)[1][2] states that

which follows by repeatedly applying the identity

The special case of a = 0 is closely related to the q-exponential.

Cauchy binomial theorem

Cauchy binomial theorem is a special case of the q-binomial theorem.[3]

Ramanujan's identity

Srinivasa Ramanujan gave the identity

valid for |q| < 1 and |b/a| < |z| < 1. Similar identities for have been given by Bailey. Such identities can be understood to be generalizations of the Jacobi triple product theorem, which can be written using q-series as

Ken Ono gives a related formal power series[4]

Watson's contour integral

As an analogue of the Barnes integral for the hypergeometric series, Watson showed that

where the poles of lie to the left of the contour and the remaining poles lie to the right. There is a similar contour integral for r+1φr. This contour integral gives an analytic continuation of the basic hypergeometric function in z.

Matrix version

The basic hypergeometric matrix function can be defined as follows:

The ratio test shows that this matrix function is absolutely convergent.[5]

See also

Notes

  1. ^ Bressoud, D. M. (1981), "Some identities for terminating q-series", Mathematical Proceedings of the Cambridge Philosophical Society, 89 (2): 211–223, Bibcode:1981MPCPS..89..211B, doi:10.1017/S0305004100058114, MR 0600238.
  2. ^ Benaoum, H. B. (1998), "h-analogue of Newton's binomial formula", Journal of Physics A: Mathematical and General, 31 (46): L751 – L754, arXiv:math-ph/9812011, Bibcode:1998JPhA...31L.751B, doi:10.1088/0305-4470/31/46/001, S2CID 119697596.
  3. ^ Wolfram Mathworld: Cauchy Binomial Theorem
  4. ^ Gwynneth H. Coogan and Ken Ono, A q-series identity and the Arithmetic of Hurwitz Zeta Functions, (2003) Proceedings of the American Mathematical Society 131, pp. 719–724
  5. ^ Ahmed Salem (2014) The basic Gauss hypergeometric matrix function and its matrix q-difference equation, Linear and Multilinear Algebra, 62:3, 347-361, DOI: 10.1080/03081087.2013.777437

References

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2023) يمكن إثبات عملية الانجذاب الكيميائي باستخدام اختبار أنبوب شعري (كما هو موضح أعلاه). تستشعر بدائيات النوى المتحركة المواد الكيميائية في بيئتها وتغير حركتها وفق

 

Malaysian badminton player In this Chinese name, the family name is Koo (古). Badminton playerKoo Kien Keat古健杰Koo Kien KeatPersonal informationCountryMalaysiaBorn (1985-09-18) 18 September 1985 (age 38)Ipoh, Perak, MalaysiaHeight1.79 m (5 ft 10 in)[1]Weight75 kg (165 lb; 11.8 st)[1]Years active2003–2016RetiredNovember 2016HandednessRight[1]Men's doublesHighest ranking1 (11 October 2007) Medal record Men's badminton Repre...

 

Spain Spain ni chalo icho chili kwa Europe. vteCountries and dependencies of EuropeSovereign statesAlbania · Andorra · Armenia · Austria · Belarus · Belgium · Bosnia and Herzegovina · Bulgaria · Croatia · Cyprus · Czech Republic · Denmark · Estonia · Finland · France · Georgia · Germany · Greece · Hungary · Iceland · Ireland · Italy · Latvia · Liechtenstein · Lithuania · Luxembourg · Malta · Moldova · Monaco · Montenegro · Netherlands · North Macedonia · Norway...

МуниципалитетФуэнтелаигера-де-АльбатахесFuentelahiguera de Albatages 40°47′12″ с. ш. 3°18′24″ з. д.HGЯO Страна  Испания Автономное сообщество Кастилия — Ла-Манча Провинция Гвадалахара Район Кампиния-де-Гвадалахара Глава Анхель Ресио Блас[d] История и география Площадь 52,41 ...

 

WooseokWooseok pada tahun 2019Nama asal정우석LahirJung Woo-seok31 Januari 1998 (umur 25)Gwangju, Korea SelatanPekerjaan Rapper Penulis lagu Komponis Karier musikGenre K-pop R&B Tahun aktif2016–sekarangLabel Cube Universal Music Japan Artis terkait United Cube Pentagon Wooseok x Kuanlin Nama KoreaHangul정우석 Hanja鄭禹奭 Alih AksaraJeong U-seokMcCune–ReischauerChŏng U'sŏk Jung Woo-seok (Hangul: 정우석; Hanja: 鄭禹奭; lahir 31 Januari 199...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: El Cancionero Mas y Mas – news · newspapers · books · scholar · JSTOR (July 2016) (Learn how and when to remove this template message) 2000 box set by Los LobosEl Cancionero: Mas y MasBox set by Los LobosReleasedNovember 7, 2000Recorded1977–2000GenreR...

CWC15 المعرفات الأسماء المستعارة CWC15, AD002, C11orf5, Cwf15, HSPC148, ORF5, spliceosome-associated protein, spliceosome associated protein homolog معرفات خارجية MGI: MGI:1913320 HomoloGene: 9499 GeneCards: 51503 علم الوجود الجيني الوظيفة الجزيئية • ‏GO:0001948، ‏GO:0016582 ربط بروتيني• RNA binding المكونات الخلوية • catalytic step 2 spliceosome• spliceosomal complex• نواة• بلا...

 

PERSEHAB HARAPAN BARU FCNama lengkappersatuan sepak bola harapan baruJulukanlaskar borneo 'Berdiri2023; 0 hari lalu (2023)Stadionstadion bintang Jaya(Kapasitas: 25,000)Pemilikpt pesut etam communityManajerAhmad ribatul khaili [1]LigaLiga 3 zona kalimantan Timur Kostum kandang Kostum tandang persehab harapan baru adalah klub sepakbola indonesia yang bermarkas di Samarinda seberang, Kalimantan Timur, Indonesia. Saat Ini masih dalam proses pengembangan .[2] Referensi ^ https...

 

Здание Петербургской городской думы на дореволюционной почтовой карточке Бесплатная музыкальная школа (сокращённо БМШ) — частная музыкально-просветительская организация в Петербурге. Была основана в 1862 году по инициативе М. А. Балакирева и Г. Я. Ломакин...

Waste mound made from broken Roman pottery Monte TestaccioMonte TestaccioShown within RomeClick on the map to see markerLocationRegio XIII AventinusCoordinates41°52′33″N 12°28′32″E / 41.875952°N 12.475694°E / 41.875952; 12.475694TypeWaste moundHistoryFounded1st century BC (?) to3rd century AD Monte Testaccio (Italian pronunciation: [ˈmonte teˈstattʃo])[1] or Monte Testaceo, also known as Monte dei Cocci, is an artificial mound in Rome com...

 

Physical theory with fields invariant under the action of local gauge Lie groupsFor a more accessible and less technical introduction to this topic, see Introduction to gauge theory.This article discusses the physics of gauge theories. For the mathematical field of gauge theory, see Gauge theory (mathematics). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (S...

 

This article is part of a series on thePolitics of the Western Cape ConstitutionList of acts of the Western Cape Provincial Parliament ExecutivePremier The Hon Alan Winde MMP Provincial Cabinet Provincial ParliamentWestern Cape Parliament The Sixth Provincial Parliament Speaker Masizole Mnqasela MMP Deputy Speaker Beverley Schäfer MMP Chief Whip of the Majority Party Mireille Wenger MMP Leader of the Opposition Cameron Dugmore MMP Chief Whip of the Official Opposition Pat Lekker MMP Politica...

Major Facilitator SuperfamilyCrystal Structure of Lactose Permease LacY.IdentifiersSymbolMFSPfam clanCL0015TCDB2.A.1OPM superfamily15CDDcd06174 The major facilitator superfamily (MFS) is a superfamily of membrane transport proteins that facilitate movement of small solutes across cell membranes in response to chemiosmotic gradients.[1][2] Function The major facilitator superfamily (MFS) are membrane proteins which are expressed ubiquitously in all kingdoms of life for the impo...

 

History of literatureby region or country General topics Basic topics Literary terms Criticism Theory World literature Types Epic Novel Poetry Prose Romance Lists Books Authors Middle Eastern Ancient Sumerian Babylonian Hebrew Pahlavi Persian Arabic Israeli European Greek Latin Early Medieval Matter of Rome Matter of France Matter of Britain Medieval Renaissance Modern Structuralism Poststructuralism Deconstruction Modernism Postmodernism Post-colonialism Hypertexts North and South American A...

 

У этого термина существуют и другие значения, см. Вездеход (значения). Вездеход ГАЗ-34039 на Ванкорском месторождении в Восточной Сибири.Вездеход BigBo. Вездеход — наземное транспортное средство высокой проходимости для передвижения по пересечённой местности, и в условия...

Trelleborg AB Тип Публичная компания Листинг на бирже SSE: TREL B Основание 1905 Расположение  Швеция: Треллеборг Отрасль 25 (МСОК) Продукция эластомер Оборот ▲ SEK 24,803 млрд (2015 год) Операционная прибыль ▲ SEK 3,219 млрд (2015 год) Чистая прибыль ▲ SEK 3,219 млрд (2015 год) Активы ▼ SEK 22,515 млрд (2014 го...

 

Canadian gridiron football player (born 1972) American football player Mitch BergerBerger in 2009.No. 17Position:PunterPersonal informationBorn: (1972-06-24) June 24, 1972 (age 51)Kamloops, British Columbia, CanadaHeight:6 ft 4 in (1.93 m)Weight:228 lb (103 kg)Career informationHigh school:North Delta (Delta, British Columbia)College:ColoradoNFL Draft:1994 / Round: 6 / Pick: 193CFL Draft:1994 / Round: 1 / Pick: 12Career his...

 

English philanthopist and wife of former British Prime Minister John Major DameNorma MajorDBEBornNorma Christina Elizabeth Wagstaff (1942-02-12) 12 February 1942 (age 81)Shropshire, EnglandEducationLondon South Bank UniversityOccupationsDressmakerphilanthropistwriterbiographerPolitical partyConservativeSpouse Sir John Major ​(m. 1970)​Children2 Dame Norma Christina Elizabeth, Lady Major, DBE (née Wagstaff, formerly Johnson; born 12 February 1942) is an ...

1988 live album by The Dave Brubeck QuartetThe Great ConcertsLive album by The Dave Brubeck QuartetReleased1988RecordedFebruary 21, 1963Carnegie Hall, New York CityDecember 3, 1963Concertgebouw, AmsterdamMarch 5, 1958CopenhagenGenreJazzLength74:00LabelColumbiaCK 44215ProducerTeo Macero (1-6), Mike Berniker (1-8), Cal Lampley (7-9) The Great Concerts is a jazz live album by The Dave Brubeck Quartet. It was originally released on LP and CD under the series Columbia Jazz Masterpieces, in...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of animated feature films of 1989 – news · newspapers · books · scholar · JSTOR (September 2012) (Learn how and when to remove this template message) Animated feature films By decade 1917–1969Before 1940 1940s 1950s 1960s 1970s1970 1971 1972 1973 1974 19...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!