It is used in several dive computers, particularly those made by Suunto, Aqwary, Mares, HydroSpace Engineering,[1] and Underwater Technologies Center. It is characterised by the following assumptions: blood flow (perfusion) provides a limit for tissue gas penetration by diffusion; an exponential distribution of sizes of bubble seeds is always present, with many more small seeds than large ones; bubbles are permeable to gas transfer across surface boundaries under all pressures; the haldaneantissue compartments range in half time from 1 to 720 minutes, depending on gas mixture.[1]
Some manufacturers such as Suunto have devised approximations of Wienke's model. Suunto uses a modified haldanean nine-compartment model with the assumption of reduced off-gassing caused by bubbles. This implementation offers both a depth ceiling and a depth floor for the decompression stops. The former maximises tissue off-gassing and the latter minimises bubble growth.[4] The model has been correlated and validated in a number of published articles using collected dive profile data.[citation needed][clarification needed]
Description
The model is based on the assumption that phase separation during decompression is random, yet highly probable, in body tissue, and that a bubble will continue to grow by acquiring gas from adjacent saturated tissue, at a rate depending on the local free/dissolved concentration gradient. Gas exchange mechanisms are fairly well understood in comparison with nucleation and stabilization mechanisms, which are computationally uncertainly defined. Nevertheless there is an opinion among some decompression researchers that the existing practices and studies on bubbles and nuclei provide useful information on bubble growth and elimination processes and the time scales involved. Wienke considers that the consistency between these practices and the underlying physical principles suggest directions for decompression modelling for algorithms beyond parameter fitting and extrapolation. He considers that the RGBM implements the theoretical model in these aspects and also supports the efficacy of recently developed safe diving practice due to its dual phase mechanics. These include:[5]
^Campbell, Ernest S (30 April 2009). "Reduced gradient bubble model". Scubadoc's Diving Medicine. Retrieved 12 January 2010. – Bruce Wienke describes the differences between RGBM and VPM