Organic semiconductor

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are injected from appropriate electrodes or are introduced by doping or photoexcitation.

General properties

In molecular crystals the energetic separation between the top of the valence band and the bottom conduction band, i.e. the band gap, is typically 2.5–4 eV, while in inorganic semiconductors the band gaps are typically 1–2 eV. This implies that molecular crystals are, in fact, insulators rather than semiconductors in the conventional sense. They become semiconducting only when charge carriers are either injected from the electrodes or generated by intentional or unintentional doping.

Charge carriers can also be generated in the course of optical excitation. It is important to realize, however, that the primary optical excitations are neutral excitons with a Coulomb-binding energy of typically 0.5–1.0 eV. The reason is that in organic semiconductors their dielectric constants are as low as 3–4. This impedes efficient photogeneration of charge carriers in neat systems in the bulk. Efficient photogeneration can only occur in binary systems due to charge transfer between donor and acceptor moieties. Otherwise neutral excitons decay radiatively to the ground state – thereby emitting photoluminescence – or non-radiatively. The optical absorption edge of organic semiconductors is typically 1.7–3 eV, equivalent to a spectral range from 700 to 400 nm (which corresponds to the visible spectrum).

History

Early history

Edge-on view of portion of crystal structure of hexamethyleneTTF/TCNQ charge-transfer salt, highlighting the segregated stacking[1]

In 1862, Henry Letheby obtained a partly conductive material by anodic oxidation of aniline in sulfuric acid. The material was probably polyaniline.[2] In the 1950s, researchers discovered that polycyclic aromatic compounds formed semi-conducting charge-transfer complex salts with halogens. In particular, high conductivity of 0.12 S/cm was reported in peryleneiodine complex in 1954.[3] This finding indicated that organic compounds could carry current.

The fact that organic semiconductors are, in principle, insulators but become semiconducting when charge carriers are injected from the electrode(s) was discovered by Kallmann and Pope.[4][5] They found that a hole current can flow through an anthracene crystal contacted with a positively biased electrolyte containing iodine that can act as a hole injector. This work was stimulated by the earlier discovery by Akamatu et al.[6] that aromatic hydrocarbons become conductive when blended with molecular iodine because a charge-transfer complex is formed. Since it was readily realized that the crucial parameter that controls injection is the work function of the electrode, it was straightforward to replace the electrolyte by a solid metallic or semiconducting contact with an appropriate work function. When both electrons and holes are injected from opposite contacts, they can recombine radiatively and emit light (electroluminescence). It was observed in organic crystals in 1965 by Sano et al.[7]

In 1972, researchers found metallic conductivity in the charge-transfer complex TTF-TCNQ. Superconductivity in charge-transfer complexes was first reported in the Bechgaard salt (TMTSF)2PF6 in 1980.[8]

An organic polymer voltage-controlled switch from 1974. Now in the Smithsonian Chip collection

In 1973 Dr. John McGinness produced the first device incorporating an organic semiconductor. This occurred roughly eight years before the next such device was created. The "melanin (polyacetylenes) bistable switch" currently is part of the chips collection of the Smithsonian Institution.[9]

In 1977, Shirakawa et al. reported high conductivity in oxidized and iodine-doped polyacetylene.[10] They received the 2000 Nobel prize in Chemistry for "The discovery and development of conductive polymers".[11] Similarly, highly conductive polypyrrole was rediscovered in 1979.[12]

Organic LEDs, solar cells and FETs

Rigid-backbone organic semiconductors are now used as active elements in optoelectronic devices such as organic light-emitting diodes (OLED), organic solar cells, organic field-effect transistors (OFET), electrochemical transistors and recently in biosensing applications. Organic semiconductors have many advantages, such as easy fabrication, mechanical flexibility, and low cost.

The discovery by Kallman and Pope paved the way for applying organic solids as active elements in semiconducting electronic devices, such as organic light-emitting diodes (OLEDs) that rely on the recombination of electrons and holes injected from "ohmic" electrodes, i.e. electrodes with unlimited supply of charge carriers.[13] The next major step towards the technological exploitation of the phenomenon of electron and hole injection into a non-crystalline organic semiconductor was the work by Tang and Van Slyke.[14] They showed that efficient electroluminescence can be generated in a vapor-deposited thin amorphous bilayer of an aromatic diamine (TAPC) and Alq3 sandwiched between an indium-tin-oxide (ITO) anode and an Mg:Ag cathode. Another milestone towards the development of organic light-emitting diodes (OLEDs) was the recognition that also conjugated polymers can be used as active materials.[15] The efficiency of OLEDs was greatly improved when realizing that phosphorescent states (triplet excitons) may be used for emission when doping an organic semiconductor matrix with a phosphorescent dye, such as complexes of iridium with strong spin–orbit coupling.[16]

Work on conductivity of anthracene crystals contacted with an electrolyte showed that optically excited dye molecules adsorbed at the surface of the crystal inject charge carriers.[17] The underlying phenomenon is called sensitized photoconductivity. It occurs when photo-exciting a dye molecule with appropriate oxidation/reduction potential adsorbed at the surface or incorporated in the bulk. This effect revolutionized electrophotography, which is the technological basis of today's office copying machines.[18] It is also the basis of organic solar cells (OSCs), in which the active element is an electron donor, and an electron acceptor material is combined in a bilayer or a bulk heterojunction.

Doping with strong electron donors or acceptors can render organic solids conductive even in the absence of light. Examples are doped polyacetylene[19] and doped light-emitting diodes.[20]

Materials

Amorphous molecular films

Amorphous molecular films are produced by evaporation or spin-coating. They have been investigated for device applications such as OLEDs, OFETs, and OSCs. Illustrative materials are tris(8-hydroxyquinolinato)aluminium, C60, phenyl-C61-butyric acid methyl ester (PCBM), pentacene, carbazoles, and phthalocyanine.

Molecularly doped polymers

Molecularly doped polymers are prepared by spreading a film of an electrically inert polymer, e.g. polycarbonate, doped with typically 30% of charge transporting molecules, on a base electrode. Typical materials are the triphenylenes. They have been investigated for use as photoreceptors in electrophotography.[18] This requires films to have a thickness of several micrometers, which can be prepared using the doctor-blade technique.

Molecular crystals

In the early days of fundamental research into organic semiconductors the prototypical materials were free-standing single crystals of the acene family, e.g. anthracene and tetracene.[21] The advantage of employing molecular crystals instead of amorphous film is that their charge carrier mobilities are much larger. This is of particular advantage for OFET applications. Examples are thin films of crystalline rubrene prepared by hot wall epitaxy.[22][23]

Neat polymer films

They are usually processed from solution employing variable deposition techniques including simple spin-coating, ink-jet deposition or industrial reel-to-reel coating which allows preparing thin films on a flexible substrate. The materials of choice are conjugated polymers such as poly-thiophene, poly-phenylenevinylene, and copolymers of alternating donor and acceptor units such as members of the poly(carbazole-dithiophene-benzothiadiazole (PCDTBT) family.[24] For solar cell applications they can be blended with C60 or PCBM as electron acceptors.

Aromatic short peptides self-assemblies

Aromatic short peptides self-assemblies are a kind of promising candidate for bioinspired and durable nanoscale semiconductors.[25] The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions.[26] As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems.

Characterization

Organic semiconductors can be characterized by UV-photoemission spectroscopy. The equivalent technique for electron states is inverse photoemission.[27]

To measure the mobility of charge carriers, the traditional technique is the so-called time of flight (TOF) method. This technique requires relatively thick samples; it is not applicable to thin films. Alternatively, one can extract the charge carrier mobility from the current in a field effect transistor as a function of both the source-drain and the gate voltage. Other ways to determine the charge carrier mobility involve measuring space charge limited current (SCLC) flow and "carrier extraction by linearly increasing voltage (CELIV).[28]

In order to characterize the morphology of semiconductor films, one can apply atomic force microscopy (AFM), scanning electron microscopy (SEM), and grazing-incidence small-angle scattering (GISAS).

Charge transport

In contrast to organic crystals investigated in the 1960-70s, organic semiconductors that are nowadays used as active media in optoelectronic devices are usually more or less disordered. Combined with the fact that the structural building blocks are held together by comparatively weak van der Waals forces this precludes charge transport in delocalized valence and conduction bands. Instead, charge carriers are localized at molecular entities, e.g. oligomers or segments of a conjugated polymer chain, and move by incoherent hopping among adjacent sites with statistically variable energies. Quite often the site energies feature a Gaussian distribution. Also the hopping distances can vary statistically (positional disorder).

A consequence of the energetic broadening of the density of states (DOS) distribution is that charge motion is both temperature and field dependent and the charge carrier mobility can be several orders of magnitude lower than in an equivalent crystalline system. This disorder effect on charge carrier motion is diminished in organic field-effect transistors because current flow is confined in a thin layer. Therefore, the tail states of the DOS distribution are already filled so that the activation energy for charge carrier hopping is diminished. For this reason the charge carrier mobility inferred from FET experiments is always higher than that determined from TOF experiments.[28]

In organic semiconductors, charge carriers couple to vibrational modes and are referred to as polarons. Therefore, the activation energy for hopping motion contains an additional term due to structural site relaxation upon charging a molecular entity. It turns out, however, that usually the disorder contribution to the temperature dependence of the mobility dominates over the polaronic contribution.[29]

Mechanical Properties[30]

Elastic Modulus

The elastic modulus can be measured through tensile testing, which captures the material's stress-strain response. Additionally, the buckling method, employing buckling equations and measured wavelengths, can be used to determine the mechanical modulus of film materials.[31] The elastic modulus significantly impacts the applications of organic semiconductors; lower moduli are preferable for wearable and flexible electronics to ensure flexibility,[32] while higher moduli are required for devices needing greater resistance to mechanical stresses and enhanced structural integrity.[33]

Yield Point

The yield point of organic semiconductors is the stress or strain level at which the material starts to deform permanently. After this point, the material loses its elasticity and undergoes permanent deformation. Yield strength is usually measured by conducting tensile testing. Understanding and regulating the yield point of organic semiconductors is essential to designing devices that can endure operational stress without permanent deformation.[34] This helps maintain the device's functionality and prolong its lifetime.

Viscoelasticity

As polymers, organic semiconductors exhibit viscoelasticity, meaning they exhibit both viscous and elastic characteristics during deformation.[35] Viscoelasticity allows materials to return to their original shape after being deformed and to exhibit strain that varies over time. Viscoelasticity is typically measured using dynamic mechanical analysis (DMA). Viscoelasticity is crucial for wearable devices, which are subjected to stretching and bending during use. The viscoelastic properties help the materials absorb energy during these processes, enhancing durability and ensuring long-term functionality under continuous physical stress.[36][37]

See also

References

  1. ^ D. Chasseau; G. Comberton; J. Gaultier; C. Hauw (1978). "Réexamen de la structure du complexe hexaméthylène-tétrathiafulvalène-tétracyanoquinodiméthane". Acta Crystallographica Section B. 34 (2): 689. Bibcode:1978AcCrB..34..689C. doi:10.1107/S0567740878003830.
  2. ^ The Nobel Prize in Chemistry, 2000: Conductive polymers, nobelprize.org.
  3. ^ Herbert Naarmann "Polymers, Electrically Conducting" in Ullmann's Encyclopedia of Industrial Chemistry 2002 Wiley-VCH, Weinheim. doi:10.1002/14356007.a21_429.
  4. ^ Kallmann; Pope (1960). "Bulk Conductivity in Organic Crystals". Nature. 186 (4718): 31. Bibcode:1960Natur.186...31K. doi:10.1038/186031a0. S2CID 4243929.
  5. ^ Kallmann; Pope (1960). "Positive Hole Injection Into Organic Crystals". J. Chem. Phys. 32 (1): 300. Bibcode:1960JChPh..32..300K. doi:10.1063/1.1700925.
  6. ^ Akamatu; Inokuchi; Matsunage (1956). "Organic Semiconductors with High Conductivity. 1. Complexes Between Polycyclic Aromatic Hydrocarbons and Halogens". Bull. Chem. Soc. Jpn. 29 (2): 213. doi:10.1246/bcsj.29.213.
  7. ^ Sano; Pope; Kallmann (1965). "Electroluminescence and Band Gap in Anthracene". J. Chem. Phys. 43 (8): 2920. Bibcode:1965JChPh..43.2920S. doi:10.1063/1.1697243.
  8. ^ Jérome, D.; Mazaud, A.; Ribault, M.; Bechgaard, K. (1980). "Superconductivity in a synthetic organic conductor (TMTSF)2PF 6" (PDF). Journal de Physique Lettres. 41 (4): 95. doi:10.1051/jphyslet:0198000410409500.
  9. ^ John McGinness; Corry, Peter; Proctor, Peter (March 1, 1974). "Amorphous Semiconductor Switching in Melanins". Science. 183 (4127): 853–855. Bibcode:1974Sci...183..853M. doi:10.1126/science.183.4127.853. JSTOR 1737211. PMID 4359339. S2CID 13138099.
  10. ^ Shirakawa, Hideki; Louis, Edwin J.; MacDiarmid, Alan G.; Chiang, Chwan K.; Heeger, Alan J. (1977). "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x". Journal of the Chemical Society, Chemical Communications (16): 578. doi:10.1039/C39770000578.
  11. ^ "Chemistry 2000". Nobelprize.org. Retrieved 2010-03-20.
  12. ^ Diaz, A. F.; Kanazawa, K. Keiji; Gardini, Gian Piero (1979). "Electrochemical polymerization of pyrrole". Journal of the Chemical Society, Chemical Communications (14): 635. doi:10.1039/C39790000635.
  13. ^ Sano; Pope; Kallmann (1965). "Recombination Radiation in Anthracene Crystals". Physical Review Letters. 14 (7): 229–231. Bibcode:1965PhRvL..14..229H. doi:10.1103/physrevlett.14.229.
  14. ^ Tang; Van Slyke (1987). "Organic Luminescent Diodes". Appl. Phys. Lett. 51 (12): 913. Bibcode:1987ApPhL..51..913T. doi:10.1063/1.98799.
  15. ^ Burroughes; Bradly; Brown (1990). "Light-Emitting Diodes Based on Conjugated Polymers". Nature. 348 (6293): 539. Bibcode:1990Natur.347..539B. doi:10.1038/347539a0. S2CID 43158308.
  16. ^ Forrest; Bradley; Thompson (2003). "Measuring the efficiency of organic light-emitting devices". Adv. Mater. 15 (13): 1043. Bibcode:2003AdM....15.1043F. doi:10.1002/adma.200302151. S2CID 136563613.
  17. ^ Kallmann; Pope (1960). "Surface-Controlled Bulk Conductivity in Organic Crystals". Nature. 185 (4715): 753. Bibcode:1960Natur.185..753K. doi:10.1038/185753a0. S2CID 4297994.
  18. ^ a b Borsenberger; Weiss (1998). Organic Photoreceptors for Xerography. Marcel Dekker Inc. New York.
  19. ^ Heeger; Kivelson; Schrieffer (1988). "Solitons in Conducting Polymers". Rev. Mod. Phys. 60 (3): 781. Bibcode:1988RvMP...60..781H. doi:10.1103/RevModPhys.60.781.
  20. ^ Walzer; Maennig; Pfeifer (2007). "Highly efficient organic devices based on electrically doped transport layers". Chem. Rev. 107 (4): 1233–71. doi:10.1021/cr050156n. PMID 17385929.
  21. ^ Pope; Swenberg (1999). Electronic processes in organic crystals and polymers. Oxford Science Publications.
  22. ^ Podzorov; Pudalov; Gershenson (2003). "Field-effect transistors on rubrene single crystals with parylene gate insulator". Appl. Phys. Lett. 82 (11): 1739. arXiv:cond-mat/0210555. Bibcode:2003ApPhL..82.1739P. doi:10.1063/1.1560869. S2CID 54773029.
  23. ^ de Boer; Gershenson; Morpurgo (2004). "Organic single-crystal field-effect transistors". Physica Status Solidi A. 201 (6): 1302. arXiv:cond-mat/0404100. Bibcode:2004PSSAR.201.1302D. doi:10.1002/pssa.200404336. S2CID 119384257.
  24. ^ Ma; Yang; Gong (2005). "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology". Adv. Funct. Mater. 15 (10): 1617. doi:10.1002/adfm.200500211. S2CID 135626155.
  25. ^ Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud (17 Nov 2017). "Self-assembling peptide semiconductors". Science. 358 (6365): eaam9756. doi:10.1126/science.aam9756. PMC 5712217. PMID 29146781.
  26. ^ Kai Tao; Zhen Fan; Leming Sun; Pandeeswar Makam; Zhen Tian; Mark Ruegsegger; Shira Shaham-Niv; Derek Hansford; Ruth Aizen; Zui Pan; Scott Galster; Jianjie Ma; Fan Yuan; Mingsu Si; Songnan Qu; Mingjun Zhang; Ehud Gazit; Junbai Li (13 Aug 2018). "Quantum confined peptide assemblies with tunable visible to near-infrared spectral range". Nature Communications. 9 (1): 3217. Bibcode:2018NatCo...9.3217T. doi:10.1038/s41467-018-05568-9. PMC 6089888. PMID 30104564.
  27. ^ Köhler; Bässler (2015). Electronic Processes in organic semiconductors. Wiley – VCH.
  28. ^ a b Köhler; Bässler (2012). "Charge Transport in Organic Semiconductors". Topics in Current Chemistry. 312: 1–65. doi:10.1007/128_2011_218. ISBN 978-3-642-27283-7. PMID 21972021.
  29. ^ Fishchuk (2013). "Unified description for hopping transport in organic semiconductors including both energetic disorder and polaronic contributions". Phys. Rev. B. 88 (12): 12. Bibcode:2013PhRvB..88l5202F. doi:10.1103/physrevb.88.125202.
  30. ^ Root, Samuel E.; Savagatrup, Suchol; Printz, Adam D.; Rodriquez, Daniel; Lipomi, Darren J. (2017-05-10). "Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics". Chemical Reviews. 117 (9): 6467–6499. doi:10.1021/acs.chemrev.7b00003. ISSN 0009-2665. PMID 28343389.
  31. ^ Tahk, Dongha; Lee, Hong H.; Khang, Dahl-Young (2009-09-22). "Elastic Moduli of Organic Electronic Materials by the Buckling Method". Macromolecules. 42 (18): 7079–7083. Bibcode:2009MaMol..42.7079T. doi:10.1021/ma900137k. ISSN 0024-9297.
  32. ^ Xu, Xinzhao; Zhao, Yan; Liu, Yunqi (May 2023). "Wearable Electronics Based on Stretchable Organic Semiconductors". Small. 19 (20): e2206309. doi:10.1002/smll.202206309. ISSN 1613-6810. PMID 36794301.
  33. ^ Qian, Yan; Zhang, Xinwen; Xie, Linghai; Qi, Dianpeng; Chandran, Bevita K.; Chen, Xiaodong; Huang, Wei (November 2016). "Stretchable Organic Semiconductor Devices". Advanced Materials. 28 (42): 9243–9265. Bibcode:2016AdM....28.9243Q. doi:10.1002/adma.201601278. hdl:10356/85103. ISSN 0935-9648. PMID 27573694.
  34. ^ Printz, Adam D.; Chiang, Andrew S. -C.; Savagatrup, Suchol; Lipomi, Darren J. (2016-07-01). "Fatigue in organic semiconductors: Spectroscopic evolution of microstructure due to cyclic loading in poly(3-heptylthiophene)". Synthetic Metals. 217: 144–151. doi:10.1016/j.synthmet.2016.03.033. ISSN 0379-6779.
  35. ^ Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo VJ; Vallittu, Pekka K; Shimizu, Hiroshi; Takahashi, Yutaka (2016-01-02). "The effect of cycling deflection on the injection-molded thermoplastic denture base resins". Acta Odontologica Scandinavica. 74 (1): 67–72. doi:10.3109/00016357.2015.1042039. ISSN 0001-6357. PMID 25953322.
  36. ^ Lee, Hwa Sung; Kang, Moon Sung; Kang, Sung Kyung; Kim, Beom Joon; Yoo, Youngjae; Lim, Ho Sun; Um, Soong Ho; Ryu, Du Yeol; Lee, Dong Ryeol; Cho, Jeong Ho (2012-10-18). "Surface Viscoelasticity of an Organic Interlayer Affects the Crystalline Nanostructure of an Organic Semiconductor and Its Electrical Performance". The Journal of Physical Chemistry C. 116 (41): 21673–21678. doi:10.1021/jp305820r. ISSN 1932-7447.
  37. ^ Kim, Choongik; Facchetti, Antonio; Marks, Tobin J. (2007-10-05). "Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance". Science. 318 (5847): 76–80. Bibcode:2007Sci...318...76K. doi:10.1126/science.1146458. ISSN 0036-8075. PMID 17916727.

Further reading

  • Electronic Processes in Organic Semiconductors : An Introduction by Anna Köhler and Heinz Bässler, Wiley – VCH, 2015 ISBN 978-3-527-33292-2
  • Electronic processes in organic crystals and polymers by M. Pope and C.E.Swenberg, Oxford Science Publications, 2nd edition, 1999.
  • Organic photoreceptors for Xerographyby P.M.Borsenberger and D.S.Weiss, Marcel Dekker, New York, 1998.

Read other articles:

South Korean TV series or program Cook RepresentativePromotional posterGenreVariety CookingPresented byKim Sung-joo Ahn Jung-hwan Kang Ho-dongStarringChoi Hyun-seok Sam Kim Lee Won-il Lee Yeon-bok Oh Se-deukJung Ho-youngChoi Hyung-jinLee Chan-ohYoo Hyun-sooCountry of originSouth KoreaOriginal languageKoreanNo. of episodes25ProductionProduction locationSouth KoreaRunning time70 minutesOriginal releaseNetworkJTBCReleaseFebruary 17 (2016-02-17) –August 10, 2016 (2016-08-10)...

 

Pour les articles homonymes, voir Mun. Simulation des Nations unies à Stuttgart, en Allemagne.Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (août 2023). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section «&#...

 

  لمعانٍ أخرى، طالع كاميلا (توضيح). كاميلا     الإحداثيات 31°13′49″N 84°12′33″W / 31.2303°N 84.2092°W / 31.2303; -84.2092  تقسيم إداري  البلد الولايات المتحدة[1]  التقسيم الأعلى مقاطعة ميتشل، جورجيا  عاصمة لـ مقاطعة ميتشل، جورجيا  خصائص جغرافية  المساحة 17...

2014 studio album by AnoukParadise and Back AgainStudio album by AnoukReleased21 November 2014 (2014-11-21)GenrePop rock, soft rock, punkLabelUniversal MusicAnouk chronology Live at Symphonica in Rosso(2014) Paradise and Back Again(2014) Queen for a Day(2016) Paradise and Back Again is the ninth studio album by Dutch recording artist Anouk.[1][2] It was released on 21 November 2014 by Universal Music. Track listing Cold Blackhearted Golddiggers She Is Be...

 

Soap opera character Hayley SmithHome and Away characterRebecca Cartwright as Hayley (2005)Portrayed byRebecca Cartwright (1998–2005)Ella Scott Lynch (2005)Eliza Wyvill (flashback)Duration1998–2005First appearance28 September 1998Last appearance25 November 2005ClassificationFormer; regularIntroduced byJohn HolmesBook appearancesHome and Away: The Long GoodbyeHome and Away: MaydaySpin-offappearancesHome and Away: Secrets and the City (2002)Home and Away: Hearts Div...

 

Charles Taylor Charles Ghankay Taylor (* 28. Januar 1948 in Arthington bei Monrovia) ist ein liberianischer Politiker. Er war vom 2. August 1997 bis zum 11. August 2003 der 22. Staatspräsident von Liberia. Taylor war ein bekannter Warlord im liberianischen Bürgerkrieg in den 1990er Jahren und wurde später zum Präsidenten gewählt. Seine Amtszeit war durch Rebellion und regionale Konflikte geprägt und endete nach einem erneuten Bürgerkrieg mit seinem Exil. Am 29. März 2006 wurde er beim...

En el procesamiento de señal digital, el suavizado espacial o anti-aliasing espacial es la técnica de minimizar la distorsión artificial conocido como aliasing cuando se representa una imagen de alta resolución con una resolución más baja. El suavizado o anti-aliasing se utiliza en fotografía digital, gráficos por computadora, audio digital y muchas otras aplicaciones En inglés, anti-aliasing, significa eliminar los componentes de una señal que tienen una frecuencia mayor que la que...

 

spaSetiap tahun, lebih dari 3 juta wisatawan mengunjungi Taj Mahal di Agra, Uttar Pradesh. Lukisan abad keenam di Gua Ajanta di Aurangabad, Maharashtra. Pariwisata di India merupakan sektor ekonomi penting, dengan kontribusi 6,23% terhadap PDB nasional dan 8,78% dari total lapangan kerja di India. India menyaksikan lebih dari 5,5 juta kedatangan wisatawan asing tahunan[1] dan 740 juta kunjungan pariwisata domestik. Industri pariwisata di India yang dihasilkan sekitar AS$ 100.000.000.0...

 

Sifat ekstensif', seperti volume dan massa adalah sifat adiftif, dalam arti bahwa nilai sifat itu bagi keseluruhan benda adalah jumlah nilai-nilai dari semua bagian yang menjadikannya. Sifat ekstensif adalah sifat makroskopis yang bergantung pada massa atau kuantitas zat, contohnya massa, volume, mol, dan energi kinetik. dapat dikatakan bahwa sifat ekstensif merupakan sifat yang bergantung pada jumlah zat.[1] Dalam sifat ekstensif, nilai dari keseluruhan sistem merupakan penjumlahan n...

Filipino food and beverage company Universal Robina CorporationLogo used since 2016FormerlyUniversal Corn Products, Inc. (1954–1966)Consolidated Foods Corporation / CFC Corporation (1961–2004)Robina Farms, Inc. (1963–1966)Type Private (1954–1994) Public (since 1994) Traded asPSE: URCIndustryManufacturingFoundedSeptember 28, 1954; 69 years ago (1954-09-28)FounderJohn Gokongwei Jr.Headquarters6/F Tera Tower, Bridgetowne, E. Rodriguez, Jr. Avenue, Barangay Ugong No...

 

1975 single by ABBA This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rock Me ABBA song – news · newspapers · books · scholar · JSTOR (December 2019) (Learn how and when to remove this template message) Rock MeSingle by ABBAfrom the album ABBA ReleasedApril 1976Recorded1974GenreGlam rockLength3:06LabelPol...

 

Roger Capatinta Mamani Consejero regional del Cuscopor Canas 1 de enero de 2015-31 de diciembre de 2018Gobernador Edwin Licona LiconaPredecesor Valerio Pacuala HuillcaSucesor Tomás Mamani Quispe Alcalde distrital de Layo 1 de enero de 2003-31 de diciembre de 2006Predecesor Eriberto Machaca HuayllaniSucesor Daniel Quispe Alanocca Información personalNombre completo Roger Aníbal Capatinta MamaniNacimiento 30 de octubre de 1972 (51 años)Layo, Perú PerúNacionalidad PeruanaFamiliaPadres...

García IñiguezGarcía Íñiguez di sebuah buku tentang monarki PortugalRaja Pamplona KeduaPeriode851-2 – 870PendahuluÍñigo AristaPenerusFortún GarcésInformasi pribadiKelahiransekitar tahun 805Kematian870PemakamanBiara LeyreWangsaÍñiguezAyahÍñigo AristaPasanganUrracaAnakFortún GarcésSancho GarcésOneca Garcés, Permaisuri Aragon García Íñiguez (Latin:Garsea Enneconis, bahasa Basque:Gartzea Eneko; sekitar tahun 805 - 882), juga dikenal sebagai García I atau García Íñiguez d...

 

1974 studio album by Mott the HoopleThe HoopleStudio album by Mott the HoopleReleased29 March 1974 (1974-03-29)[1]RecordedJanuary 1974 (1974-01) – February 1974 (1974-02)StudioAdvision (London)AIR (London)GenreGlam rock, hard rockLength39:09LabelCBS (UK)Columbia (U.S.)ProducerDale Buffin Griffin, Ian Hunter and Pete Overend WattsMott the Hoople chronology Mott(1973) The Hoople(1974) Live(1974) Singles from The Hoople Roll Away the StoneRele...

 

The Sydney Fringe FestivalThe Sydney Fringe Festival LogoGenreArts festivalDates2021: 01–30 SeptemberLocation(s)SydneyCountryAustraliaYears active2010–2019, 2021–Founded2010Participants~500 artists (2019)[1]Attendance~70,000 (2019)[1]Websitesydneyfringe.com The Sydney Fringe Festival is the largest independent arts festival in New South Wales with over 450 events presented in over 70 venues across Greater Sydney each year during September. It encompasses genres such as s...

American politician Chargé d'AffairesCondy Raguet1st United States Ambassador to BrazilIn officeOctober 29, 1825 – April 16, 1827PresidentJohn Quincy AdamsPreceded byOffice establishedSucceeded byWilliam TudorMember of the Pennsylvania Senatefrom the 1st districtIn office1818–1821Preceded byMichael LeibSucceeded byRobert McMullin Personal detailsBornJanuary 28, 1784Philadelphia, Pennsylvania, United StatesDiedMarch 22, 1842 (aged 58)Philadelphia, Pennsylvania, United StatesPolit...

 

Park in Nebraska, United States Not to be confused with Niobrara National Scenic River. Niobrara State ParkHistoric Niobrara State Park River BridgeLocation in NebraskaLocationKnox County, Nebraska. United StatesNearest townNiobrara, NebraskaCoordinates42°45′05″N 98°03′57″W / 42.75139°N 98.06583°W / 42.75139; -98.06583Area1,236.59 acres (500.43 ha)[1]Elevation1,230 ft (370 m)[2]DesignationNebraska state parkEstablished198...

 

Casio Computer Co., Ltd.カシオ計算機株式会社Logo CasioJenisPublik (TYO: 6952)IndustriElektronikDidirikan1 Juni 1957KantorpusatShibuya, Tokyo, Jepang[1]TokohkunciKazuo Kashio (Presiden) Hideaki Terada (Chairman dan CEO)Produkkamera digital, arloji, piano & kibor, kalkulator, kamus digital, proyektor, mesin kasirPendapatanUS$ 4.616 miliar (2010)Karyawan11,336 (2010)Situs webwww.casio.com Casio Computer Co., Ltd. (カシオ計算機株式会社 Kashio Keisanki Kabushiki-gai...

George Lopez Serie de televisión Género SitcomComediaHumor negroComedia de situaciónCreado por Bruce HelfordGeorge LopezRobert BordenProtagonistas George LopezConstance MarieValente RodriguezMasliela LushaLuis Armand GarciaBelita MorenoEmiliano DíezAimee GarciaTema principal Low Rider(compuesto por Thomas Allen, Harold Ray Brown, Morris Dickerson, Gerald Goldstein, Lonnie Jordan, Lee Levitin, Charles Miller y Howard E. Scott)Tema de cierre Low Rider (instrumental)Compositor(es) W.G. Snuff...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Secondary education in Singapore – news · newspapers · books · scholar · JSTOR (October 2015) (Learn how and when to remove this template message) Overview of secondary education in Singapore The Ministry of Education language centre. Secondary education in Sin...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!