Nir Tessler (Hebrew: ניר טסלר; born 1962) is the Barbara and Norman Seiden professor in the Faculty of Electrical and Computer Engineering and head of the Microelectronics and Nanoelectronics centers at the Technion - Israel Institute of Technology.[1]
Nir Tessler was born in Haifa, Israel. He studied at Hebrew Reali School, and served in the Israeli Air Force from 1980 to 1985.[2]
Tessler received his B.Sc in electrical engineering in 1989 (Summa Cum Laude) and M.Sc in electrical engineering (1992), both from the Technion. His Ph.D. degree was received in 1995 from the Technion. Tessler authored the thesis Dynamic Properties of Inverted QW Laser Structure, under the supervision of Gadi Eisenstein.[3]
Tessler was a research associate and later an EPSRC advanced fellow at the Cavendish Laboratory, Cambridge University, UK from 1995 to 1999.[4][5] He then joined the faculty of electrical engineering at the Technion as a senior lecturer. Tessler became an associate professor in 2003, and a full professor in 2008. From 2010, Tessler is head of the Microelectronics and Nanoelectronics centers at the Technion.[1]
As of April 2022, Tessler has supervised 27 graduate students, and authored over 200 scientific publications.[2]
Tessler's research work focuses on new materials and the relation of their chemical and physics properties with device performance; Device chemical-physics and device structural designs. This includes light-matter interaction (including laser action and micro-cavities), transport of electrons, holes, and ions, electron-hole pairs (excitons), processing of devices (transistors, photo-images, detectors and solar cells).[1]
In 1996 Tessler was the first to introduce a “plastic laser” based on semiconducting organic molecule (polymer).[6][7] Two years later he initiated the construction of the first smart-pixel, which proved that thin flexible screens are feasible.[8] In 2002 he showed that organic LEDs (OLEDs) can be made to emit light at a wavelength (“color”) that is relevant to fiber-based communication (i.e., at 1.3 micron).[9] In 2006, he submitted a patent for a new transistor structure which had a vertical orientation where the transistor functions of gate, source, channel, and drain are stacked one on top of the other.[10]