Mediant (mathematics)

In mathematics, the mediant of two fractions, generally made up of four positive integers

and is defined as

That is to say, the numerator and denominator of the mediant are the sums of the numerators and denominators of the given fractions, respectively. It is sometimes called the freshman sum, as it is a common mistake in the early stages of learning about addition of fractions.

Technically, this is a binary operation on valid fractions (nonzero denominator), considered as ordered pairs of appropriate integers, a priori disregarding the perspective on rational numbers as equivalence classes of fractions. For example, the mediant of the fractions 1/1 and 1/2 is 2/3. However, if the fraction 1/1 is replaced by the fraction 2/2, which is an equivalent fraction denoting the same rational number 1, the mediant of the fractions 2/2 and 1/2 is 3/4. For a stronger connection to rational numbers the fractions may be required to be reduced to lowest terms, thereby selecting unique representatives from the respective equivalence classes.

The Stern–Brocot tree provides an enumeration of all positive rational numbers via mediants in lowest terms, obtained purely by iterative computation of the mediant according to a simple algorithm.

Properties

  • The mediant inequality: An important property (also explaining its name) of the mediant is that it lies strictly between the two fractions of which it is the mediant: If and , then This property follows from the two relations and
  • Componendo and Dividendo Theorems: If and , then[1]
  • Assume that the pair of fractions a/c and b/d satisfies the determinant relation . Then the mediant has the property that it is the simplest fraction in the interval (a/c, b/d), in the sense of being the fraction with the smallest denominator. More precisely, if the fraction with positive denominator c' lies (strictly) between a/c and b/d, then its numerator and denominator can be written as and with two positive real (in fact rational) numbers . To see why the must be positive note that and must be positive. The determinant relation then implies that both must be integers, solving the system of linear equations for . Therefore,
  • The converse is also true: assume that the pair of reduced fractions a/c < b/d has the property that the reduced fraction with smallest denominator lying in the interval (a/cb/d) is equal to the mediant of the two fractions. Then the determinant relation bcad = 1 holds. This fact may be deduced e.g. with the help of Pick's theorem which expresses the area of a plane triangle whose vertices have integer coordinates in terms of the number vinterior of lattice points (strictly) inside the triangle and the number vboundary of lattice points on the boundary of the triangle. Consider the triangle with the three vertices v1 = (0, 0), v2 = (ac), v3 = (bd). Its area is equal to A point inside the triangle can be parametrized as where The Pick formula now implies that there must be a lattice point q = (q1, q2) lying inside the triangle different from the three vertices if bcad > 1 (then the area of the triangle is ). The corresponding fraction q1/q2 lies (strictly) between the given (by assumption reduced) fractions and has denominator as
  • Relatedly, if p/q and r/s are reduced fractions on the unit interval such that |ps − rq| = 1 (so that they are adjacent elements of a row of the Farey sequence) then where ? is Minkowski's question mark function.
    In fact, mediants commonly occur in the study of continued fractions and in particular, Farey fractions. The nth Farey sequence Fn is defined as the (ordered with respect to magnitude) sequence of reduced fractions a/b (with coprime a, b) such that b ≤ n. If two fractions a/c < b/d are adjacent (neighbouring) fractions in a segment of Fn then the determinant relation mentioned above is generally valid and therefore the mediant is the simplest fraction in the interval (a/cb/d), in the sense of being the fraction with the smallest denominator. Thus the mediant will then (first) appear in the (c + d)th Farey sequence and is the "next" fraction which is inserted in any Farey sequence between a/c and b/d. This gives the rule how the Farey sequences Fn are successively built up with increasing n.

Graphical determination of mediants

Determining the mediant of two rational numbers graphically. The slopes of the blue and red segments are two rational numbers; the slope of the green segment is their mediant.

A positive rational number is one in the form where are positive natural numbers; i.e. . The set of positive rational numbers is, therefore, the Cartesian product of by itself; i.e. . A point with coordinates represents the rational number , and the slope of a segment connecting the origin of coordinates to this point is . Since are not required to be coprime, point represents one and only one rational number, but a rational number is represented by more than one point; e.g. are all representations of the rational number . This is a slight modification of the formal definition of rational numbers, restricting them to positive values, and flipping the order of the terms in the ordered pair so that the slope of the segment becomes equal to the rational number.

Two points where are two representations of (possibly equivalent) rational numbers and . The line segments connecting the origin of coordinates to and form two adjacent sides in a parallelogram. The vertex of the parallelogram opposite to the origin of coordinates is the point , which is the mediant of and .

The area of the parallelogram is , which is also the magnitude of the cross product of vectors and . It follows from the formal definition of rational number equivalence that the area is zero if and are equivalent. In this case, one segment coincides with the other, since their slopes are equal. The area of the parallelogram formed by two consecutive rational numbers in the Stern–Brocot tree is always 1.[2]

Generalization

The notion of mediant can be generalized to n fractions, and a generalized mediant inequality holds,[3] a fact that seems to have been first noticed by Cauchy. More precisely, the weighted mediant of n fractions is defined by (with ). It can be shown that lies somewhere between the smallest and the largest fraction among the .

See also

References

  1. ^ a b c Milburn, R. M. (1880). Mathematical Formulae: For the Use of Candidates Preparing for the Army, Civil Service, University, and Other Examinations. Longmans, Green & Company. pp. 18–19.
  2. ^ Austin, David. Trees, Teeth, and Time: The mathematics of clock making, Feature Column from the AMS
  3. ^ Bensimhoun, Michael (2013). "A note on the mediant inequality" (PDF). Retrieved 2023-12-25.

Read other articles:

Bukov Localidad BanderaEscudo BukovLocalización de Bukov en República ChecaCoordenadas 49°27′16″N 16°13′25″E / 49.454338975888, 16.223591918908Entidad Localidad • País  República Checa • Región Vysočina • Distrito Žďár nad SázavouSuperficie   • Total 5,32 km² Altitud   • Media 526 m s. n. m.Población (1 de enero de 2023)   • Total 196 hab. • Densidad 36,82 hab/km²Código ...

 

De 65ste editie van Parijs-Nice werd gehouden van 11 tot en met 18 maart 2007 in Frankrijk. Zoals elk jaar startte de ronde in de omgeving van Parijs - in Issy-les-Moulineaux om precies te zijn - waarna het wielerpeloton richting de Côte d'Azur trok. De eindstreep ligt in Nice, waar ook de laatste etappe verreden wordt. Het eindklassement werd gewonnen door Alberto Contador, die pas op de laatste dag de trui overnam van Davide Rebellin. Naast de eindzege won de Spanjaard ook twee etappes. Ru...

 

The HonourableMasagos ZulkifliMPMasagos pada acara makan siang bersama Menteri Pertahanan Amerika Serikat Donald Rumsfeld di Pentagon bulan Oktober 2006Menteri Lingkungan dan Sumber AirPetahanaMulai menjabat 1 Oktober 2015Perdana MenteriLee Hsien LoongPendahuluVivian BalakrishnanAnggota Parlemen Singapuradapil Tampines GRC (Tampines West)PetahanaMulai menjabat 6 Mei2006Menteri di Kantor Perdana MenteriMasa jabatan9 April 2015 – 30 September 2015Perdana MenteriLee Hsien Loon...

International Cricket stadium in Pune, Maharashtra Maharashtra Cricket Association StadiumMCA StadiumMCA International Stadium[1]Ground informationLocationGahunje, PuneCoordinates18°40′28″N 73°42′24″E / 18.67444°N 73.70667°E / 18.67444; 73.70667Home clubMaharashtra cricket teamMaharashtra women's cricket teamEstablishment2012[2]Capacity42,700[3][4]OwnerMaharashtra Cricket AssociationArchitectMichael Hopkins,[2] Hopkin...

 

Lok Sabha Constituency in Kerala, India IdukkiLok Sabha constituencyMap of Idukki Parliament ConstituencyConstituency detailsCountryIndiaRegionSouth IndiaStateKeralaAssembly constituenciesMuvattupuzhaKothamangalamDevikulamUdumbancholaThodupuzhaIdukkiPeerumadeEstablished1977Total electors1,203,258 (2019)ReservationNoneMember of Parliament17th Lok SabhaIncumbent Dean Kuriakose PartyINCElected year2019 Idukki Lok Sabha constituency is one of the 20 Lok Sabha (parliamentary) constituencies in the...

 

José Manuel Aguilera (Su Majestad) Información personalNombre de nacimiento José Manuel Aguilera GutiérrezOtros nombres Su MajestadNacimiento 30 de mayo de 1959 (63 años)Ciudad de México (México) Nacionalidad MexicanaInformación profesionalOcupación Músico, productor y escritor.Años activo 1986 a la fecha.Seudónimo Su MajestadGéneros Rock, son cubano, funk, bossa novaInstrumentos guitarra, vozDiscográficas Opción Sónica, BMG Ariola, Universal Music, FONCA, Independiente.S...

Brazilian sprinter For the Brazilian footballer, see Robson da Silva Ourique. Róbson da SilvaPersonal informationFull nameRóbson Caetano da SilvaNationality BrazilBorn (1964-09-04) September 4, 1964 (age 59)Rio de Janeiro, Rio de Janeiro, BrazilHeight1.87 m (6 ft 2 in)Weight74 kg (163 lb)SportSportTrack and field Medal record Men's athletics Representing  Brazil Olympic Games 1988 Seoul 200 metres 1996 Atlanta 4×100 m relay World Indoor Champion...

 

Pie with a cherry filling For other uses, see Cherry pie (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cherry pie – news · newspapers · books · scholar · JSTOR (February 2015) (Learn how and when to remove this template message) Cherry pieTypePieMain ingredientsPie crust, cherries, sugar,...

 

For the Irish Jacobite soldier, see Nicholas Cusack (Jacobite). Kildare CathedralNicholas Cusack (died 5 September 1299) was a thirteenth-century Bishop of Kildare and member of the Franciscan Order.[1] He belonged to a prominent Anglo-Irish family from County Meath, who were tenants-in-chief to Baron Skryne, and were later based mainly at Cushinstown, County Meath. Walter de Cusack of Gerrardstown (died 1334), the leading judge and military commander, was a cousin. Nicholas clearly r...

2005 American filmConstellationPoster for ConstellationDirected byJordan Walker-PearlmanWritten byJordan Walker-PearlmanProduced byJordan Walker-PearlmanStarringEver CarradineDavid ClennonRae Dawn ChongMelissa De SousaHill HarperAlec NewmanZoe SaldanaBilly Dee WilliamsLesley Anne WarrenGabrielle UnionClarence Williams IIICinematographyJohn Niaga DempsEdited byAlison LearnedMusic byMichael BeardenStefan DickersonStanley A. SmithDistributed byCodeblack Entertainment20th Century FoxRelease dates...

 

Selección de baloncesto de Cuba Datos generalesPaís CubaFederación Federación Cubana de BaloncestoFederación FIBA AméricasSeleccionador Alberto ZabalaRanking FIBA 37º al 28 de febrero de 2023Equipaciones Local Uniforme de baloncesto Visitante Mejor(es) resultado(s) Sin datosPeor(es) resultado(s) Sin datosCopa Mundial de BaloncestoParticipaciones 11 (primera vez en 1953)Medallas 03 ! Bronce: 1990Campeonato FIBA AméricasParticipaciones 12 (primera vez en 1989)Medallas 01 ! Oro: ...

 

Berikut ini adalah daftar mereka yang pernah menjabat sebagai Pimpinan Kampus Bumi Siliwangi (UPI), dari mulai Dekan PTPG Bandung, Dekan FKIP UNPAD, Rektor IKIP Bandung hingga berubah menjadi Universitas Pendidikan Indonesia (UPI). Rektor Universitas Pendidikan IndonesiaPetahanaProf. Dr.M. SolehuddinM.Pd., M.A.sejak 16 Juni 2020Kediaman resmiRumah Dinas Rektor UPIJalan Geger Kalong Girang, Sukasari, BandungMenjabat selama5 TahunPemegang pertamaProf. Dr. H. Roeslan AbdulganiDibentuk2 Mei ...

1997 film by Lenin Rajendran KulamDirected byLenin RajendranWritten byLenin Rajendran (dialogues)Screenplay byLenin RajendranBased onMarthandavarmaby C. V. Raman PillaiStarringSuresh GopiBhanupriyaVijayaraghavanJagathy SreekumarCinematographyMadhu AmbatEdited byB. LeninV. T. VijayanMusic bySongs:M. G. RadhakrishnanBackground Score:Mohan SitharaProductioncompanyUsha Priya Movie MakersDistributed byUsha Priya Movie MakersRelease date 6 February 1997 (1997-02-06) CountryIndiaLangu...

 

Building on Raisina Hill, New Delhi, India which houses the Cabinet Secretariat Secretariat BuildingNorth Block of the buildingLocation in New Delhi, IndiaGeneral informationArchitectural styleDelhi OrderLocationNew Delhi, IndiaCoordinates28°36′54″N 77°12′21″E / 28.61500°N 77.20583°E / 28.61500; 77.20583Construction started1912Completed1927Technical detailsFloor area148,000 sq ft (13,700 m2)Design and constructionArchitect(s)Herbert Baker The...

 

Historic building in Portland, Oregon, U.S. United States historic placeRinehart BuildingU.S. National Register of Historic PlacesPortland Historic Landmark[1] The building's exterior in 2013Location in Portland, OregonLocation3037–3041 N. Williams AvenuePortland, OregonCoordinates45°32′43″N 122°40′01″W / 45.545199°N 122.666886°W / 45.545199; -122.666886Built1910NRHP reference No.13000982Added to NRHPDecember 24, 2013 The Rinehart Buildi...

Species of shrub Salix repens S. repens in flower Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Malpighiales Family: Salicaceae Genus: Salix Species: S. repens Binomial name Salix repensL. Synonyms[1] Biggina argentea Raf. Diplima arenaria Raf. Salix adscendens Sm. Salix argentea Dum.Cours. Salix decumbens Schleich. ex J.Forbes Salix fusca L. Salix litoralis Host Salix parvifolia Sm. Salix pratensis Host Sa...

 

Sonderbriefmarke zur Tagung des 3. Volkskongresses (Sowjetische Besatzungszone 1949) Der Deutsche Volkskongress war ein Gremium, das erstmals am 6. Dezember 1947 zusammentrat. Die Initiative ging von der SED aus; es nahmen Parteien und Organisationen des Antifaschistisch-demokratischen Blocks in der Sowjetischen Besatzungszone sowie einzelne Delegierte aus den Westzonen teil. Die wichtigste Forderung des Deutschen Volkskongresses war die nach einer zentralen deutschen Regierung.[1 ...

 

Tom Clancy'sSplinter Cell: ConvictionNhà phát triểnUbisoft MontrealNhà phát hànhUbisoftThiết kếMaxime Béland, Alex ParizeauDòng trò chơiTom Clancy's Splinter CellCông nghệLEAD (dựa trên engine Chaos Theory)[1]Nền tảngXbox 360, Windows, Mac OS X, iOS, WP7, Android, Java MEPhát hành 13 tháng 4 năm 2010 Xbox 360[2]NA: 13 tháng 4 năm 2010AU: 15 tháng 4 năm 2010EU: 16 tháng 4 năm 2010JP: 28 tháng 4 năm 2010Windows (bán lẻ)[3]NA: 27 th...

Voce principale: Berliner Fußballclub Dynamo. Fußballclub BerlinStagione 1996-1997Sport calcio Squadra BFC Dynamo Allenatore Werner Voigt Regionalliga nordest13° posto Maggiori presenzeCampionato: Reckmann, Dahlke (34)Totale: Reckmann, Dahlke (34) Miglior marcatoreCampionato: Seruga (8)Totale: Seruga (8) StadioSportforum Hohenschönhausen Maggior numero di spettatori2 300 vs. Dinamo Dresda Minor numero di spettatori250 vs. Hertha Zehlendorf Media spettatori636 1995-1996 1997-1998...

 

Aspect of history This article's factual accuracy may be compromised due to out-of-date information. Please help update this article to reflect recent events or newly available information. (May 2016) Part of a series on theCulture of Sudan History Economic history more People more Languages Cuisine Religion Islam in Sudan Christianity in Sudan Literature List of Sudanese writers Music and Performing arts List of Sudanese singers more Media Television Cinema Photography Sport Monuments World ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!