Isocyanates should not be confused with cyanate esters and isocyanides, very different families of compounds. The cyanate (cyanate ester) functional group (R−O−C≡N) is arranged differently from the isocyanate group (R−N=C=O). Isocyanides have the connectivity R−N≡C, lacking the oxygen of the cyanate groups.
Structure and bonding
In terms of bonding, isocyanates are closely related to carbon dioxide (CO2) and carbodiimides (C(NR)2). The C−N=C=O unit that defines isocyanates is planar, and the N=C=O linkage is nearly linear. In phenyl isocyanate, the C=N and C=O distances are respectively 1.195 and 1.173 Å. The C−N=C angle is 134.9° and the N=C=O angle is 173.1°.[4]
These reactions proceed via the intermediacy of a carbamoyl chloride (RNHC(O)Cl). Owing to the hazardous nature of phosgene, the production of isocyanates requires special precautions.[1] A laboratory-safe variation masks the phosgene as oxalyl chloride.[5] Also, oxalyl chloride can be used to form acyl isocyanates from primary amides, which phosgene typically dehydrates to nitriles instead.[6]
Another route to isocyanates entails addition of isocyanic acid to alkenes. Complementarily, alkyl isocyanates form by displacement reactions involving alkyl halides and alkali metal cyanates.[7]
Upon treatment with an alcohol, an isocyanate forms a urethane linkage:
ROH + R'NCO → ROC(O)N(H)R'
where R and R' are alkyl or aryl groups.
If a diisocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes.
This reaction is exploited in tandem with the production of polyurethane to give polyurethane foams. The carbon dioxide functions as a blowing agent.[12]
MDI is commonly used in the manufacture of rigid foams and surface coating.[1] Polyurethane foam boards are used in construction for insulation. TDI is commonly used in applications where flexible foams are used, such as furniture and bedding. Both MDI and TDI are used in the making of adhesives and sealants due to weather-resistant properties. Isocyanates, both MDI and TDI are widely used in as spraying applications of insulation due to the speed and flexibility of applications. Foams can be sprayed into structures and harden in place or retain some flexibility as required by the application.[19] HDI is commonly utilized in high-performance surface-coating applications, including automotive paints.
Health and safety
The risks of isocyanates was brought to the world's attention with the 1984 Bhopal disaster, which caused the death of nearly 4000 people from the accidental release of methyl isocyanate. In 2008, the same chemical was involved in an explosion at a pesticide manufacturing plant in West Virginia.[20]
LD50s for isocyanates are typically several hundred milligrams per kilogram.[21] Despite this low acute toxicity, an extremely low short-term exposure limit (STEL) of 0.07 mg/m3 is the legal limit for all isocyanates (except methyl isocyanate: 0.02 mg/m3) in the United Kingdom.[22] These limits are set to protect workers from chronic health effects such as occupational asthma, contact dermatitis, or irritation of the respiratory tract.[23]
Since they are used in spraying applications, the properties of their aerosols have attracted attention.[24][25] In the U.S., OSHA conducted a National Emphasis Program on isocyanates starting in 2013 to make employers and workers more aware of the health risks.[26]
Polyurethanes have variable curing times, and the presence of free isocyanates in foams vary accordingly.[27]
Both the US National Toxicology Program (NTP) and International Agency for Research on Cancer (IARC) have evaluated TDI as a potential human carcinogen and Group 2B "possibly carcinogenic to humans".[28][29] MDI appears to be relatively safer and is unlikely a human carcinogen.[29] The IARC evaluates MDI as Group 3 "not classifiable as to its carcinogenicity in humans".[30]
All major producers of MDI and TDI are members of the International Isocyanate Institute, which promotes the safe handling of MDI and TDI.
Hazards
Toxicity
Isocyanates can present respiratory hazards as particulates, vapors or aerosols. Autobody shop workers are a very commonly examined population for isocyanate exposure as they are repeatedly exposed when spray painting automobiles[31] and can be exposed when installing truck bed liners.[32][33] Hypersensitivity pneumonitis has slower onset and features chronic inflammation that can be seen on imaging of the lungs. Occupational asthma is a worrisome outcome of respiratory sensitization to isocyanates as it can be acutely fatal.[34] Diagnosis of occupational asthma is generally performed using pulmonary function testing (PFT) and performed by pulmonology or occupational medicine physicians.[35] Occupational asthma is much like asthma in that it causes episodic shortness of breath and wheezing. Both the dose and duration of exposure to isocyanates can lead to respiratory sensitization.[36] Dermal exposures to isocyanates can sensitize an exposed person to respiratory disease.
Dermal exposures can occur via mixing, spraying coatings or applying and spreading coatings manually. Dermal exposures to isocyanates is known to lead to respiratory sensitization.[37] Even when the right personal protective equipment (PPE) is used, exposures can occur to body areas not completely covered.[38] Isocyanates can also permeate improper PPE, necessitating frequent changes of both disposable gloves and suits if they become over exposed.
Flammability
Methyl isocyanate (MIC) is highly flammable.[39] MDI and TDI are much less flammable.[40] Flammability of materials is a consideration in furniture design.[41] The specific flammability hazard is noted on the safety data sheet (SDS) for specific isocyanates.
Industrial science attempts to minimize the hazards of isocyanates through multiple techniques. The EPA has sponsored ongoing research on polyurethane production without isocyanates.[42][43] Where isocyanates are unavoidable but interchangeable, substituting a less hazardous isocyanate may control hazards. Ventilation and automation can also minimizes worker exposure to the isocyanates used.[24][44]
If human workers must enter isocyanate-contaminated regions, personal protective equipment (PPE) can reduce their intake. In general, workers wear eye protection[44] and gloves and coveralls to reduce dermal exposure[45][46][25][47] For some autobody paint and clear-coat spraying applications, a full-face mask is required.[31][32]
The US Occupational Safety and Health Administration (OSHA) requires frequent training to ensure isocyanate hazards are appropriately minimized.[48] Moreover, OSHA requires standardized isocyanate concentration measurements to avoid violating occupational exposure limits. In the case of MDI, OSHA expects sampling with glass-fiber filters at standard air flow rates, and then liquid chromatography.[49]
Combined industrial hygiene and medical surveillance can significantly reduce occupational asthma incidence.[50] Biological tests exist to identify isocyanate exposure;[51] the US Navy uses regular pulmonary function testing and screening questionnaires.[52]
Emergency management is a complex process of preparation and should be considered in a setting where a release of bulk chemicals may threaten the well-being of the public. In the Bhopal disaster, an uncontrolled MIC release killed thousands, affected hundreds of thousands more, and spurred the development of modern disaster preparation.[53]
Occupational exposure limits
Exposure limits can be expressed as ceiling limits, a maximal value, short-term exposure limits (STEL), a 15-minute exposure limit or an 8-hour time-weighted average limit (TWA). Below is a sampling, not exhaustive, as less common isocyanates also have specific limits within the United States, and in some regions there are limits on total isocyanate, which recognizes some of the uncertainty regarding the safety of mixtures of chemicals as compared to pure chemical exposures. For example, while there is no OEL for HDI, NIOSH has a REL of 5 ppb for an 8-hour TWA and a ceiling limit of 20 ppb, consistent with the recommendations for MDI.[54]
The Occupational Safety and Health Administration (OSHA) is the regulatory body covering worker safety. OSHA puts forth permissible exposure limit (PEL) 20 ppb for MDI and detailed technical guidance on exposure assessment.[52]
The National Institutes of Health (NIOSH) is the agency responsible for providing the research and recommendations regarding workplace safety, while OSHA is more of an enforcement body. NIOSH is responsible for producing the science that can result in recommended exposure limits (REL), which can be lower than the PEL. OSHA is tasked with enforcement and defending the enforceable limits (PELs). In 1992, when OSHA reduced the PEL for TDI to the NIOSH REL, the PEL reduction was challenged in court, and the reduction was reversed.[61]
The Environmental Protection Agency (EPA) is also involved in the regulation of isocyanates with regard to the environment and also non-worker persons that might be exposed.[62]
The American Conference of Governmental Industrial Hygienists (ACGIH) is a non-government organization that publishes guidance known as threshold limit values (TLV)[61] for chemicals based research as constant work exposure level without ill-effect[clarify]. The TLV is not an OSHA-enforceable value, unless the PEL is the same.
European Union
The European Chemicals Agency (ECHA) provides regulatory oversight of chemicals used within the European Union.[63] ECHA has been implementing policy aimed at limiting worker exposure through elimination by lower allowable concentrations in products and mandatory worker training, an administrative control.[64] Within the European Union, many nations set their own occupational exposure limits for isocyanates.
The IARC evaluates the hazard data on chemicals and assigns a rating on the risk of carcinogenesis. In the case of TDI, the final evaluation is possibly carcinogenic to humans (Group 2B).[66] For MDI, the final evaluation is not classifiable as to its carcinogenicity to humans (Group 3).[67]
The International Isocyanate Institute is an international industry consortium that seeks promote the safe utilization of isocyanates by promulgating best practices.[68]
^Byrn, Marianne P.; Curtis, Carol J.; Hsiou, Yu; Khan, Saeed I.; Sawin, Philip A.; Tendick, S. Kathleen; Terzis, Aris; Strouse, Charles E. (1993). "Porphyrin sponges: conservative of host structure in over 200 porphyrin-based lattice clathrates". Journal of the American Chemical Society. 115 (21). American Chemical Society (ACS): 9480–9497. doi:10.1021/ja00074a013. ISSN0002-7863.
^Manov-Yuvenskii, V. I.; Redoshkin, B. A.; Belyaeva, G. P.; Nefedov, B. K. (March 1981) [21 Jan 1980]. "Effect of carbon monoxide pressure, pyridine concentration, and temperature on synthesis of 1-methylbenzene 2,4-diisocyanate by carbonylation of 2,4-dinitrotoluene". Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya. 3. Plenum: 614–617. doi:10.1007/BF00949595. UDC 542.91:541.12.034:546.262.3-31:547.546.
^Manov-Yuvenskii, V. I.; Redoshkin, B. A.; Belyaeva, G. P.; Nefedov, B. K. (January 1980) [13 Oct 1978]. "Synthesis of aromatic diisocyanates by carbonylation of dinitro compounds with carbon monoxide on palladium catalysts". Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya. 1. Plenum: 133–136. doi:10.1007/BF00951891. UDC 542.91:541.128:547.546:546.263.3-31.
^Li, Zhen; Mayer, Robert J.; Ofial, Armin R.; Mayr, Herbert (2020-04-27). "From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes". Journal of the American Chemical Society. 142 (18): 8383–8402. doi:10.1021/jacs.0c01960. PMID32338511. S2CID216557447.
^Baumgarten, Henry; Smith, Howard; Staklis, Andris (1975). "Reactions of amines. XVIII. Oxidative rearrangement of amides with lead tetraacetate". The Journal of Organic Chemistry. 40 (24): 3554–3561. doi:10.1021/jo00912a019.
^Ceballos, Diana M.; Fent, Kenneth W.; Whittaker, Stephen G.; Gaines, Linda G. T.; Thomasen, Jennifer M.; Flack, Sheila L.; Nylander-French, Leena A.; Yost, Michael G.; Reeb-Whitaker, Carolyn K. (2011-08-10). "Survey of Dermal Protection in Washington State Collision Repair Industry". Journal of Occupational and Environmental Hygiene. 8 (9): 551–560. doi:10.1080/15459624.2011.602623. ISSN1545-9624. PMID21830873. S2CID33905218.
^Hu, Jimmy; Cantrell, Phillip; Nand, Aklesh (2017-07-29). "Comprehensive Biological Monitoring to Assess Isocyanates and Solvents Exposure in the NSW Australia Motor Vehicle Repair Industry". Annals of Work Exposures and Health. 61 (8): 1015–1023. doi:10.1093/annweh/wxx064. ISSN2398-7308. PMID29028250. S2CID2072874.
^ abcAllport, D. C.; Gilbert, D. S.; Outterside, S. M. (2003). MDI and TDI: Safety, Health and the Environment. England: John Wiley & Sons, LTD. p. 346. ISBN978-0-471-95812-3.